Current approaches and future opportunities for climate-smart protected areas

April 8, 2025

Abstract

The Global Biodiversity Framework’s target of protecting 30% of land, waters and seas by 2030 requires critical discussion of where to establish new protected areas. Spatial prioritization — the process of identifying priority areas — has increasingly recognized that climate change will affect the efficacy of protected areas, as species move to track shifting climate niches. In this Review, we synthesize the current climate-smart approaches: those strategies aimed at designing protected areas that are more resilient to climate change. Such approaches include protecting species’ future habitats, protecting climate refugia, protecting areas that facilitate climate connectivity and protecting areas that promote adaptation potential. To implement these approaches, challenges include uncertainty and gaps in underlying data. We provide actionable guidance for applying these climate-smart approaches in different contexts and highlight promising ways to integrate advances in climate change ecology into conservation planning.

Key points

  • Conservation planning increasingly integrates a growing breadth of approaches that incorporate the effects of climate change on biodiversity.

  • Protecting species’ future habitats by considering range shifts remains the dominant approach, but non-species-specific approaches are gaining traction.

  • No single climate-smart approach can account for climate-change impacts on biodiversity, but adopting multiple, even conflicting, approaches could buffer against effects of climate change more effectively.

  • Protecting climate refugia can serve as a strong foundation for robust climate-smart protected area networks, which can be supplemented by protecting additional areas to facilitate climate connectivity.

  • Climate-smart spatial prioritizations are feasible on land at national to subnational scales where there are detailed data, but in data-poor areas approaches based on metrics of climate change and species traits offer viable alternatives.

  • Climate-smart conservation planning could be improved by integrating approaches across spatial scales, promoting transboundary conservation planning, and exchanging ideas across realms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Six steps to climate-smart systematic conservation planning.
Fig. 2: Current climate-smart spatial prioritization approaches.

Similar content being viewed by others

References

  1. Epps, M. & Chazot, C. (eds) The High Seas Biodiversity Treaty: an introduction to the Agreement under the United Nations Convention on the Law of the Sea on the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction. IUCN https://iucn.org/sites/default/files/2024-01/iucn-bbnj-treaty-policy-brief.pdf (2023).

  2. Fitzsimons, J., Stolton, S., Dudley, N. & Mitchell, B. Defining ‘long-term’ for protected areas and other effective area-based conservation measures. Technical Note No. 14. IUCN WCPA https://iucn.org/sites/default/files/2024-09/iucn-wcpa-technical-note-14.pdf (2024).

  3. Dudley, N., Rao, M., Zeng, Y. & Watson, J. E. M. Protected and conserved areas are irreplaceable tools for meeting linked targets on biodiversity and climate. Technical Note No. 15. IUCN WCPA https://iucn.org/sites/default/files/2024-09/iucn-wcpa-technical-note-15.pdf (2024).

  4. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2022).

  5. Pörtner, H.-O. et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 380, eabl4881 (2023).

    Article 

    Google Scholar
     

  6. Hoffmann, S. & Beierkuhnlein, C. Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib. 26, 1496–1509 (2020).

    Article 

    Google Scholar
     

  7. Smith, J. G. et al. A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems. Glob. Change Biol. 29, 5634–5651 (2023).

    Article 
    CAS 

    Google Scholar
     

  8. Dobrowski, S. Z. et al. Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Commun. Earth Environ. 2, 1–11 (2021).

    Article 

    Google Scholar
     

  9. Wilson, K. L., Tittensor, D. P., Worm, B. & Lotze, H. K. Incorporating climate change adaptation into marine protected area planning. Glob. Change Biol. 26, 3251–3267 (2020).

    Article 

    Google Scholar
     

  10. Frazão Santos, C. et al. Key components of sustainable climate-smart ocean planning. npj Ocean Sustain. 3, 10 (2024).

    Article 

    Google Scholar
     

  11. Reside, A. E., Butt, N. & Adams, V. M. Adapting systematic conservation planning for climate change. Biodivers. Conserv. 27, 1–29 (2018).

    Article 

    Google Scholar
     

  12. Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    Article 
    CAS 

    Google Scholar
     

  13. Pressey, R. L. & Bottrill, M. C. Opportunism, threats, and the evolution of systematic conservation planning. Conserv. Biol. 22, 1340–1345 (2008).

    Article 

    Google Scholar
     

  14. Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Phil. Trans. R. Soc. B 374, 20180186 (2019).

    Article 

    Google Scholar
     

  15. Boyce, D. G. et al. A climate risk index for marine life. Nat. Clim. Change 12, 854–862 (2022).

    Article 

    Google Scholar
     

  16. Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).

    Article 

    Google Scholar
     

  17. Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv. 194, 121–130 (2016).

    Article 

    Google Scholar
     

  18. Kunming–Montreal Global Biodiversity Framework agreed at the 15th meeting of the Conference of Parties to the UN Convention on Biological Diversity. CBD/COP/15/L.25. CBD https://www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222 (2022).

  19. Frazão et al. Taking climate-smart governance to the high seas. Science 384, 734–737 (2024).

    Article 

    Google Scholar
     

  20. Agreement under the United Nations Convention on the Law of the Sea on the Conservation and Sustainable Use of Marine Biological Diversity of Areas beyond National Jurisdiction. United Nations https://www.un.org/bbnjagreement/en (2023).

  21. The World Database on Protected Areas (WDPA). Protected Planet https://www.protectedplanet.net/ (2024).

  22. Corelli, V., Boerder, K., Hunter, K. L., Lavoie, I. & Tittensor, D. P. The biodiversity adaptation gap: management actions for marine protected areas in the face of climate change. Conserv. Lett. 17, e13003 (2024).

    Article 

    Google Scholar
     

  23. Pressey, R. L. & Bottrill, M. C. Approaches to landscape- and seascape-scale conservation planning: convergence, contrasts and challenges. Oryx 43, 464–475 (2009).

    Article 

    Google Scholar
     

  24. Auber, A. et al. A functional vulnerability framework for biodiversity conservation. Nat. Commun. 13, 4774 (2022).

    Article 
    CAS 

    Google Scholar
     

  25. Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27, 198–215 (2021).

    Article 

    Google Scholar
     

  26. McLeod, E. et al. Integrating climate and ocean change vulnerability into conservation planning. Coast. Manag. 40, 651–672 (2012).

    Article 

    Google Scholar
     

  27. Yang, L. et al. Effects of climate and land-cover change on the conservation status of gibbons. Conserv. Biol. 37, e14045 (2023).

    Article 

    Google Scholar
     

  28. Prieto-Torres, D. A. et al. Analyzing individual drivers of global changes promotes inaccurate long-term policies in deforestation hotspots: the case of Gran Chaco. Biol. Conserv. 269, 109536 (2022).

    Article 

    Google Scholar
     

  29. Brito-Morales, I. et al. Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nat. Clim. Change 12, 402–407 (2022).

    Article 

    Google Scholar
     

  30. Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between worlds: unraveling migratory connectivity. TREE 17, 76–83 (2002).


    Google Scholar
     

  31. Keeley, A. T. H. et al. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002 (2018).

    Article 

    Google Scholar
     

  32. Pendoley, K. L., Schofield, G., Whittock, P. A., Ierodiaconou, D. & Hays, G. C. Protected species use of a coastal marine migratory corridor connecting marine protected areas. Mar. Biol. 161, 1455–1466 (2014).

    Article 

    Google Scholar
     

  33. �lvarez-Romero, J. G. et al. Designing connected marine reserves in the face of global warming. Glob. Change Biol. 24, e671–e691 (2018).

    Article 

    Google Scholar
     

  34. Webster, M. S. et al. Who should pick the winners of climate change? TREE 32, 167–173 (2017).


    Google Scholar
     

  35. Lawler, J. J. Climate change adaptation strategies for resource management and conservation planning. Ann. NY Acad. Sci. 1162, 79–98 (2009).

    Article 

    Google Scholar
     

  36. O’Regan, S. M., Archer, S. K., Friesen, S. K. & Hunter, K. L. A global assessment of climate change adaptation in marine protected area management plans. Front. Mar. Sci. 8, 711085 (2021).

    Article 

    Google Scholar
     

  37. Carroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Change Biol. 27, 3395–3414 (2021).

    Article 

    Google Scholar
     

  38. Carvalho, S. B., Torres, J., Tarroso, P. & Velo-Antón, G. Genes on the edge: a framework to detect genetic diversity imperiled by climate change. Glob. Change Biol. 25, 4034–4047 (2019).

    Article 

    Google Scholar
     

  39. Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).

    Article 

    Google Scholar
     

  40. Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411 (2019).

    Article 

    Google Scholar
     

  41. Liczner, A. R., Schuster, R., Richardson, L. L. & Colla, S. R. Identifying conservation priority areas for North American bumble bee species in Canada under current and future climate scenarios. Conserv. Sci. Pract. 5, e12994 (2023).

    Article 

    Google Scholar
     

  42. Maxwell, S. L., Reside, A., Trezise, J., McAlpine, C. A. & Watson, J. E. M. Retention and restoration priorities for climate adaptation in a multi-use landscape. Glob. Ecol. Conserv. 18, e00649 (2019).


    Google Scholar
     

  43. Velazco, S. J. E., Svenning, J.-C., Ribeiro, B. R. & Laureto, L. M. O. On opportunities and threats to conserve the phylogenetic diversity of Neotropical palms. Divers. Distrib. 27, 512–523 (2021).

    Article 

    Google Scholar
     

  44. Franklin, J. Species distribution modelling supports the study of past, present and future biogeographies. J. Biogeogr. 50, 1533–1545 (2023).

    Article 

    Google Scholar
     

  45. Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).

    Article 

    Google Scholar
     

  46. Hendriks, I. E. & Duarte, C. M. Allocation of effort and imbalances in biodiversity research. J. Exp. Mar. Bio. Ecol. 360, 15–20 (2008).

    Article 

    Google Scholar
     

  47. The Global Biodiversity Information Facility (GBIF). GBIF https://www.gbif.org (2024).

  48. Visalli, M. E. et al. Data-driven approach for highlighting priority areas for protection in marine areas beyond national jurisdiction. Mar. Policy 122, 103927 (2020).

    Article 

    Google Scholar
     

  49. Kaschner, K. et al. AquaMaps: predicted range maps for aquatic species. AquaMaps https://www.aquamaps.org/ (2019).

  50. Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).

    Article 

    Google Scholar
     

  51. Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Article 

    Google Scholar
     

  52. Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 11, 2557 (2020).

    Article 
    CAS 

    Google Scholar
     

  53. Mokany, K. et al. Past, present and future refugia for Tasmania’s palaeoendemic flora. J. Biogeogr. 44, 1537–1546 (2017).

    Article 

    Google Scholar
     

  54. Stralberg, D. et al. Macrorefugia for North American trees and songbirds: climatic limiting factors and multi-scale topographic influences. Glob. Ecol. Biogeogr. 27, 690–703 (2018).

    Article 

    Google Scholar
     

  55. Carroll, C. et al. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob. Change Biol. 23, 4508–4520 (2017).

    Article 

    Google Scholar
     

  56. Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. TREE 29, 390–397 (2014).


    Google Scholar
     

  57. Giraldo-Ospina, A., Kendrick, G. A. & Hovey, R. K. Depth moderates loss of marine foundation species after an extreme marine heatwave: could deep temperate reefs act as a refuge? Proc. R. Soc. B 287, 20200709 (2020).

    Article 

    Google Scholar
     

  58. Graham, V., Baumgartner, J. B., Beaumont, L. J., Esperón-Rodríguez, M. & Grech, A. Prioritizing the protection of climate refugia: designing a climate-ready protected area network. JEPM 62, 2588–2606 (2019).


    Google Scholar
     

  59. Serra-Diaz, J. M. et al. Bioclimatic velocity: the pace of species exposure to climate change. Divers. Distrib. 20, 169–180 (2014).

    Article 

    Google Scholar
     

  60. Wilmot, E. et al. Characterizing mauka-to-makai connections for aquatic ecosystem conservation on Maui, Hawai‘i. Ecol. Inform. 70, 101704 (2022).

    Article 

    Google Scholar
     

  61. Buenafe, K. C. V. et al. A metric-based framework for climate-smart conservation planning. Ecol. Appl. 33, e2852 (2023).

    Article 

    Google Scholar
     

  62. Doxa, A. et al. 4D marine conservation networks: combining 3D prioritization of present and future biodiversity with climatic refugia. Glob. Change Biol. 28, 4577–4588 (2022).

    Article 
    CAS 

    Google Scholar
     

  63. Chollett, I. et al. Planning for resilience: incorporating scenario and model uncertainty and trade-offs when prioritizing management of climate refugia. Glob. Change Biol. 28, 4054–4068 (2022).

    Article 
    CAS 

    Google Scholar
     

  64. Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).

    Article 

    Google Scholar
     

  65. Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).

    Article 

    Google Scholar
     

  66. Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).

    Article 

    Google Scholar
     

  67. Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evol. 7, 1060–1071 (2023).

    Article 

    Google Scholar
     

  68. Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    Article 

    Google Scholar
     

  69. Dixon, A. M., Forster, P. M., Heron, S. F., Stoner, A. M. K. & Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 1, e0000004 (2022).

    Article 

    Google Scholar
     

  70. Iglesias, M. C. et al. Climate- and fire-smart landscape scenarios call for redesigning protection regimes to achieve multiple management goals. J. Environ. Manage. 322, 116045 (2022).

    Article 

    Google Scholar
     

  71. Ribeiro, B. R., Sales, L. P. & Loyola, R. Strategies for mammal conservation under climate change in the Amazon. Biodivers. Conserv. 27, 1943–1959 (2018).

    Article 

    Google Scholar
     

  72. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–U111 (2009).

    Article 
    CAS 

    Google Scholar
     

  73. Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).

    Article 

    Google Scholar
     

  74. Hu, X., Wei, L., Cheng, Q., Wu, X. & Ni, J. Adjusting the protected areas on the Tibetan Plateau under changing climate. Glob. Ecol. Conserv. 45, e02514 (2023).


    Google Scholar
     

  75. Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).

    Article 

    Google Scholar
     

  76. Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7, 12349 (2016).

    Article 
    CAS 

    Google Scholar
     

  77. Triviño, M., Kujala, H., Araújo, M. B. & Cabeza, M. Planning for the future: identifying conservation priority areas for Iberian birds under climate change. Landsc. Ecol. 33, 659–673 (2018).

    Article 

    Google Scholar
     

  78. Carroll, C., Dunk, J. R. & Moilanen, A. Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob. Change Biol. 16, 891–904 (2010).

    Article 

    Google Scholar
     

  79. Han, X., Huettmann, F., Guo, Y., Mi, C. & Wen, L. Conservation prioritization with machine learning predictions for the black-necked crane Grus nigricollis, a flagship species on the Tibetan Plateau for 2070. Reg. Environ. Change 18, 2173–2182 (2018).

    Article 

    Google Scholar
     

  80. Parks, S. A., Holsinger, L. M., Abatzoglou, J. T., Littlefield, C. E. & Zeller, K. A. Protected areas not likely to serve as steppingstones for species undergoing climate-induced range shifts. Glob. Change Biol. 29, 2681–2696 (2023).

    Article 
    CAS 

    Google Scholar
     

  81. McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. 113, 7195–7200 (2016).

    Article 
    CAS 

    Google Scholar
     

  82. Carroll, C., Parks, S. A., Dobrowski, S. Z. & Roberts, D. R. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Glob. Change Biol. 24, 5318–5331 (2018).

    Article 

    Google Scholar
     

  83. Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    Article 
    CAS 

    Google Scholar
     

  84. Lawler, J. J. et al. Planning for climate change through additions to a national protected area network: implications for cost and configuration. Phil. Trans. R. Soc. B 375, 20190117 (2020).

    Article 

    Google Scholar
     

  85. Stralberg, D., Carroll, C. & Nielsen, S. E. Toward a climate�informed North American protected areas network: incorporating climate�change refugia and corridors in conservation planning. Conserv. Lett. 13, e12712 (2020).

    Article 

    Google Scholar
     

  86. Dickson, B. G. et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 33, 239–249 (2019).

    Article 

    Google Scholar
     

  87. Alagador, D., Cerdeira, J. O. & Araújo, M. B. Shifting protected areas: scheduling spatial priorities under climate change. J. Appl. Ecol. 51, 703–713 (2014).

    Article 

    Google Scholar
     

  88. Lin, Y. et al. Climate-driven connectivity loss impedes species adaptation to warming in the deep ocean. Nat. Clim. Change 15, 315–320 (2025).

    Article 

    Google Scholar
     

  89. Richardson, A. J. & Buenafe, K. C. V. A deep dive into climate connectivity. Nat. Clim. Change 15, 248–249 (2025).

    Article 

    Google Scholar
     

  90. McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008).

    Article 

    Google Scholar
     

  91. McClure, M. L., Hansen, A. J. & Inman, R. M. Connecting models to movements: testing connectivity model predictions against empirical migration and dispersal data. Landsc. Ecol. 31, 1419–1432 (2016).

    Article 

    Google Scholar
     

  92. Petsas, P., Doxa, A., Almpanidou, V. & Mazaris, A. D. Global patterns of sea surface climate connectivity for marine species. Commun. Earth Environ. 3, 240 (2022).

    Article 

    Google Scholar
     

  93. Alagador, D., Cerdeira, J. O. & Araújo, M. B. Climate change, species range shifts and dispersal corridors: an evaluation of spatial conservation models. Methods Ecol. Evol. 7, 853–866 (2016).

    Article 

    Google Scholar
     

  94. Beger, M. et al. Demystifying ecological connectivity for actionable spatial conservation planning. TREE 37, 1079–1091 (2022).


    Google Scholar
     

  95. Kindlmann, P. & Burel, F. Connectivity measures: a review. Landsc. Ecol. 23, 879–890 (2008).


    Google Scholar
     

  96. Burgess, M. G., Becker, S. L., Langendorf, R. E., Fredston, A. & Brooks, C. M. Climate change scenarios in fisheries and aquatic conservation research. ICES J. Mar. Sci. 80, 1163–1178 (2023).

    Article 

    Google Scholar
     

  97. Abe, H., Kumagai, N. H. & Yamano, H. Priority coral conservation areas under global warming in the Amami Islands, Southern Japan. Coral Reefs 41, 1637–1650 (2022).

    Article 

    Google Scholar
     

  98. Chauvier-Mendes, Y. et al. Transnational conservation to anticipate future plant shifts in Europe. Nat. Ecol. Evol. 8, 454–466 (2024).

    Article 

    Google Scholar
     

  99. Magris, R. A., Pressey, R. L., Mills, M., Vila-Nova, D. A. & Floeter, S. Integrated conservation planning for coral reefs: designing conservation zones for multiple conservation objectives in spatial prioritisation. Glob. Ecol. Conserv. 11, 53–68 (2017).


    Google Scholar
     

  100. Colton, M. A. et al. Coral conservation in a warming world must harness evolutionary adaptation. Nat. Ecol. Evol. 6, 1405–1407 (2022).

    Article 

    Google Scholar
     

  101. Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9, 632–636 (2019).

    Article 

    Google Scholar
     

  102. Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).

    Article 

    Google Scholar
     

  103. Hanson, J. O. et al. Conservation planning for adaptive and neutral evolutionary processes. J. Appl. Ecol. 57, 2159–2169 (2020).

    Article 

    Google Scholar
     

  104. Hanson, J. O., Rhodes, J. R., Riginos, C. & Fuller, R. A. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proc. Natl Acad. Sci. USA 114, 12755–12760 (2017).

    Article 
    CAS 

    Google Scholar
     

  105. Game, E. T., Lipsett-Moore, G., Saxon, E., Peterson, N. & Sheppard, S. Incorporating climate change adaptation into national conservation assessments. Glob. Change Biol. 17, 3150–3160 (2011).

    Article 

    Google Scholar
     

  106. Magris, R. A., Heron, S. F. & Pressey, R. L. Conservation planning for coral reefs accounting for climate warming disturbances. PLoS ONE 10, e0140828 (2015).

    Article 

    Google Scholar
     

  107. Makino, A. et al. Spatio-temporal marine conservation planning to support high-latitude coral range expansion under climate change. Divers. Distrib. 20, 859–871 (2014).

    Article 

    Google Scholar
     

  108. Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).

    Article 

    Google Scholar
     

  109. Kleypas, J. A. et al. Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations. Glob. Change Biol. 22, 3539–3549 (2016).

    Article 

    Google Scholar
     

  110. Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).

    Article 
    CAS 

    Google Scholar
     

  111. Mumby, P. J. et al. Reserve design for uncertain responses of coral reefs to climate change. Ecol. Lett. 14, 132–140 (2011).

    Article 

    Google Scholar
     

  112. Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B 285, 20172746 (2018).

    Article 

    Google Scholar
     

  113. Thomassen, H. A. et al. Mapping evolutionary process: a multi-taxa approach to conservation prioritization. Evol. Appl. 4, 397–413 (2011).

    Article 

    Google Scholar
     

  114. Toczydlowski, R. H. et al. Poor data stewardship will hinder global genetic diversity surveillance. Proc. Natl Acad. Sci. 118, e2107934118 (2021).

    Article 
    CAS 

    Google Scholar
     

  115. Wilson, K. A. et al. Conservation research is not happening where it is most needed. PLoS Biol. 14, e1002413 (2016).

    Article 

    Google Scholar
     

  116. Jarnevich, C. S., Stohlgren, T. J., Kumar, S., Morisette, J. T. & Holcombe, T. R. Caveats for correlative species distribution modeling. Ecol. Inform. 29, 6–15 (2015).

    Article 

    Google Scholar
     

  117. Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).

    Article 
    CAS 

    Google Scholar
     

  118. Polasky, S., Carpenter, S. R., Folke, C. & Keeler, B. Decision-making under great uncertainty: environmental management in an era of global change. TREE 26, 398–404 (2011).


    Google Scholar
     

  119. Schoeman, D. S. et al. Demystifying global climate models for use in the life sciences. TREE 38, 843–858 (2023).


    Google Scholar
     

  120. Tapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L. & García-Ortega, E. Regional climate models: 30 years of dynamical downscaling. Atmos. Res. 235, 104785 (2020).

    Article 

    Google Scholar
     

  121. Liao, H., Wang, C. & Song, Z. ENSO phase-locking biases from the CMIP5 to CMIP6 models and a possible explanation. Deep. Sea Res. II 189–190, 104943 (2021).

    Article 

    Google Scholar
     

  122. Ekström, M., Grose, M. R. & Whetton, P. H. An appraisal of downscaling methods used in climate change research. Wiley Interdisc. Rev. Clim. 6, 301–319 (2015).

    Article 

    Google Scholar
     

  123. Keil, P., Wilson, A. M. & Jetz, W. Uncertainty, priors, autocorrelation and disparate data in downscaling of species distributions. Divers. Distrib. 20, 797–812 (2014).

    Article 

    Google Scholar
     

  124. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  125. Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article 

    Google Scholar
     

  126. Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).

    Article 

    Google Scholar
     

  127. Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).

    Article 

    Google Scholar
     

  128. Harris, R. M. B. et al. Climate projections for ecologists. Wiley Interdisc. Rev. Clim. 5, 621–637 (2014).

    Article 

    Google Scholar
     

  129. Alagador, D. & Cerdeira, J. O. Revisiting the minimum set cover, the maximal coverage problems and a maximum benefit area selection problem to make climate�change�concerned conservation plans effective. Methods Ecol. Evol. 11, 1325–1337 (2020).

    Article 

    Google Scholar
     

  130. Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    Article 
    CAS 

    Google Scholar
     

  131. Bryndum-Buchholz, A. et al. Climate-change impacts and fisheries management challenges in the North Atlantic Ocean. Mar. Ecol. Prog. Ser. 648, 1–17 (2020).

    Article 

    Google Scholar
     

  132. Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    Article 
    CAS 

    Google Scholar
     

  133. Perez-Navarro, M. A. et al. Comparing climatic suitability and niche distances to explain populations responses to extreme climatic events. Ecography 2022, e06263 (2022).

    Article 

    Google Scholar
     

  134. Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10, 3891 (2020).

    Article 
    CAS 

    Google Scholar
     

  135. Martel, J.-L. et al. CMIP5 and CMIP6 model projection comparison for hydrological impacts over North America. Geophys. Res. Lett. 49, e2022GL098364 (2022).

    Article 

    Google Scholar
     

  136. Game, E. T., Watts, M. E., Wooldridge, S. & Possingham, H. P. Planning for persistence in marine reserves: a question of catastrophic importance. Ecol. Appl. 18, 670–680 (2008).

    Article 

    Google Scholar
     

  137. Kujala, H., Moilanen, A., Araújo, M. B. & Cabeza, M. Conservation planning with uncertain climate change projections. PLoS ONE 8, e53315 (2013).

    Article 
    CAS 

    Google Scholar
     

  138. Giakoumi, S. et al. Advances in systematic conservation planning to meet global biodiversity goals. TREE https://doi.org/10.1016/j.tree.2024.12.002 (2025).

  139. de los Ríos, C., Watson, J. E. M. & Butt, N. Persistence of methodological, taxonomical, and geographical bias in assessments of species’ vulnerability to climate change: a review. Glob. Ecol. Conserv. 15, e00412 (2018).


    Google Scholar
     

  140. Runting, R. K. et al. Reducing risk in reserve selection using Modern Portfolio Theory: coastal planning under sea-level rise. J. Appl. Ecol. 55, 2193–2203 (2018).

    Article 

    Google Scholar
     

  141. Powers, R. P. et al. A conservation assessment of Canada’s boreal forest incorporating alternate climate change scenarios. Remote Sens. Ecol. Conserv. 3, 202–216 (2017).

    Article 

    Google Scholar
     

  142. Butt, N. et al. A trait-based framework for assessing the vulnerability of marine species to human impacts. Ecosphere 13, e3919 (2022).

    Article 

    Google Scholar
     

  143. Miatta, M., Bates, A. E. & Snelgrove, P. V. R. Incorporating biological traits into conservation strategies. Ann. Rev. Mar. Sci. 13, 421–443 (2021).

    Article 

    Google Scholar
     

  144. Boyce, D. G. et al. Operationalizing climate risk in a global warming hotspot. npj Ocean Sustain. 3, 33 (2024).

    Article 

    Google Scholar
     

  145. Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6, 8208 (2015).

    Article 
    CAS 

    Google Scholar
     

  146. Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    Article 
    CAS 

    Google Scholar
     

  147. Butt, N. & Gallagher, R. Using species traits to guide conservation actions under climate change. Clim. Change 151, 317–332 (2018).

    Article 

    Google Scholar
     

  148. Rojas, I. M. et al. A landscape-scale framework to identify refugia from multiple stressors. Conserv. Biol. 36, e13834 (2022).

    Article 

    Google Scholar
     

  149. Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article 
    CAS 

    Google Scholar
     

  150. Trisovic, A., Lau, M. K., Pasquier, T. & Crosas, M. A large-scale study on research code quality and execution. Sci. Data 9, 60 (2022).

    Article 

    Google Scholar
     

  151. Tulloch, A. I. T. et al. A decision tree for assessing the risks and benefits of publishing biodiversity data. Nat. Ecol. Evol. 2, 1209–1217 (2018).

    Article 

    Google Scholar
     

  152. Ramírez, F., Sbragaglia, V., Soacha, K., Coll, M. & Piera, J. Challenges for marine ecological assessments: completeness of findable, accessible, interoperable, and reusable biodiversity data in European Seas. Front. Mar. Sci. 8, 802235 (2022).

    Article 

    Google Scholar
     

  153. Daigle, R. M. et al. Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods Ecol. Evol. 11, 570–579 (2020).

    Article 

    Google Scholar
     

  154. Everett, J. D. et al. Weddell Sea Marine Protected Area (WSMPA) Phase 2. Norwegian Polar Institute https://mathmarecol.shinyapps.io/WSMPA2/ (2024).

  155. Pınarbaşı, K., Galparsoro, I. & Borja, �. End users’ perspective on decision support tools in marine spatial planning. Mar. Policy 108, 103658 (2019).

    Article 

    Google Scholar
     

  156. Boussarie, G., Kopp, D., Lavialle, G., Mouchet, M. & Morfin, M. Marine spatial planning to solve increasing conflicts at sea: a framework for prioritizing offshore windfarms and marine protected areas. J. Environ. Manage. 339, 117857 (2023).

    Article 

    Google Scholar
     

  157. Sinclair, S. P. et al. The use, and usefulness, of spatial conservation prioritizations. Conserv. Lett. 11, e12459 (2018).

    Article 

    Google Scholar
     

  158. Balbar, A. C. & Metaxas, A. The current application of ecological connectivity in the design of marine protected areas. Glob. Ecol. Conserv. 17, e00569 (2019).


    Google Scholar
     

  159. Samsing, F., Johnsen, I., Treml, E. A. & Dempster, T. Identifying ‘firebreaks’ to fragment dispersal networks of a marine parasite. Int. J. Parasitol. 49, 277–286 (2019).

    Article 

    Google Scholar
     

  160. Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    Article 

    Google Scholar
     

  161. Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. TREE 33, 441–457 (2018).


    Google Scholar
     

  162. Maxwell, S. M. et al. Dynamic ocean management: defining and conceptualizing real-time management of the ocean. Mar. Pol. 58, 42–50 (2015).

    Article 

    Google Scholar
     

  163. Vigo, M. et al. Dynamic marine spatial planning for conservation and fisheries benefits. Fish Fish. 25, 630–646 (2024).

    Article 

    Google Scholar
     

  164. Erisman, B. et al. Fish spawning aggregations: where well-placed management actions can yield big benefits for fisheries and conservation. Fish Fish. 18, 128–144 (2017).

    Article 

    Google Scholar
     

  165. Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).

    Article 
    CAS 

    Google Scholar
     

  166. Anderson, J. J., Gurarie, E., Bracis, C., Burke, B. J. & Laidre, K. L. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol. Modell. 264, 83–97 (2013).

    Article 

    Google Scholar
     

  167. Asch, R. G., Stock, C. A. & Sarmiento, J. L. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob. Change Biol. 25, 2544–2559 (2019).

    Article 

    Google Scholar
     

  168. Gill, J. A., Alves, J. A. & Gunnarsson, T. G. Mechanisms driving phenological and range change in migratory species. Phil. Trans. R. Soc. B 374, 20180047 (2019).

    Article 

    Google Scholar
     

  169. Robinson, R. A. et al. Travelling through a warming world: climate change and migratory species. Endanger. Species Res. 7, 87–99 (2009).

    Article 

    Google Scholar
     

  170. Meek, M. H. et al. Understanding local adaptation to prepare populations for climate change. BioScience 73, 36–47 (2023).

    Article 

    Google Scholar
     

  171. Gilbert, S. L. et al. Conservation triage at the trailing edge of climate envelopes. Conserv. Biol. 34, 289–292 (2020).

    Article 

    Google Scholar
     

  172. Schoepf, V. et al. Corals at the edge of environmental limits: a new conceptual framework to re-define marginal and extreme coral communities. Sci. Total. Environ. 884, 163688 (2023).

    Article 
    CAS 

    Google Scholar
     

  173. Nielsen, E. S. et al. Molecular ecology meets systematic conservation planning. TREE 38, 143–155 (2023).


    Google Scholar
     

  174. Schwalm, D. et al. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Glob. Change Biol. 22, 1572–1584 (2016).

    Article 

    Google Scholar
     

  175. Chardon, N. I., Pironon, S., Peterson, M. L. & Doak, D. F. Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wide-spread plant species. Ecography 43, 60–74 (2020).

    Article 

    Google Scholar
     

  176. Theodoridis, S., Patsiou, T. S., Randin, C. & Conti, E. Forecasting range shifts of a cold-adapted species under climate change: are genomic and ecological diversity within species crucial for future resilience? Ecography 41, 1357–1369 (2018).

    Article 

    Google Scholar
     

  177. Thomassen, H. A. et al. Modeling environmentally associated morphological and genetic variation in a rainforest bird, and its application to conservation prioritization. Evol. Appl. 3, 1–16 (2010).

    Article 

    Google Scholar
     

  178. McClanahan, T. R. et al. Diversification of refugia types needed to secure the future of coral reefs subject to climate change. Cons. Biol. 38, e14108 (2024).

    Article 

    Google Scholar
     

  179. Hällfors, M. H. et al. Addressing potential local adaptation in species distribution models: implications for conservation under climate change. Ecol. Appl. 26, 1154–1169 (2016).

    Article 

    Google Scholar
     

  180. Duncanson, L. et al. The effectiveness of global protected areas for climate change mitigation. Nat. Commun. 14, 2908 (2023).

    Article 
    CAS 

    Google Scholar
     

  181. Dabalà, A. et al. Priority areas to protect mangroves and maximise ecosystem services. Nat. Commun. 14, 5863 (2023).

    Article 

    Google Scholar
     

  182. Neugarten, R. A. et al. Mapping the planet’s critical areas for biodiversity and nature’s contributions to people. Nat. Commun. 15, 261 (2024).

    Article 
    CAS 

    Google Scholar
     

  183. Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).

    Article 

    Google Scholar
     

  184. Sonntag, S., Pongratz, J., Reick, C. H. & Schmidt, H. Reforestation in a high-CO2 world — higher mitigation potential than expected, lower adaptation potential than hoped for. Geophys. Res. Lett. 43, 6546–6553 (2016).

    Article 
    CAS 

    Google Scholar
     

  185. Abarca, H. et al. Spatial prioritisation of management zones in protected areas for the integration of multiple objectives. Biodivers. Conserv. 31, 1197–1215 (2022).

    Article 

    Google Scholar
     

  186. Schupp, M. F. et al. Toward a common understanding of ocean multi-use. Front. Mar. Sci. 6, 165 (2019).

    Article 

    Google Scholar
     

  187. Pinsky, M. L., Rogers, L. A., Morley, J. W. & Frölicher, T. L. Ocean planning for species on the move provides substantial benefits and requires few trade-offs. Sci. Adv. 6, eabb8428 (2020).

    Article 

    Google Scholar
     

  188. Buotte, P. C., Law, B. E., Ripple, W. J. & Berner, L. T. Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. Ecol. Appl. 30, e02039 (2020).

    Article 

    Google Scholar
     

  189. Reside, A. E., VanDerWal, J. & Moran, C. Trade-offs in carbon storage and biodiversity conservation under climate change reveal risk to endemic species. Biol. Conserv. 207, 9–16 (2017).

    Article 

    Google Scholar
     

  190. Howarth, C. & Robinson, E. J. Z. Effective climate action must integrate climate adaptation and mitigation. Nat. Clim. Change 14, 300–301 (2024).

    Article 

    Google Scholar
     

  191. Lawler, J., Watson, J. & Game, E. Conservation in the face of climate change: recent developments. F1000Res https://doi.org/10.12688/f1000research.6490.1 (2015).

  192. Meehan, M. C., Ban, N. C., Devillers, R., Singh, G. G. & Claudet, J. How far have we come? A review of MPA network performance indicators in reaching qualitative elements of Aichi Target 11. Conserv. Lett. 13, e12746 (2020).

    Article 

    Google Scholar
     

  193. Morrison, T. H. Evolving polycentric governance of the Great Barrier Reef. Proc. Natl Acad. Sci. USA 114, E3013–E3021 (2017).

    Article 
    CAS 

    Google Scholar
     

  194. Ban, N. C. et al. Systematic conservation planning: a better recipe for managing the high seas for biodiversity conservation and sustainable use. Conserv. Lett. 7, 41–54 (2014).

    Article 

    Google Scholar
     

  195. Metaxas, A., Lacharité, M. & de Mendonça, S. N. Hydrodynamic connectivity of habitats of deep-water corals in Corsair Canyon, northwest Atlantic: a case for cross-boundary conservation. Front. Mar. Sci. 6, 554 (2019).

    Article 

    Google Scholar
     

  196. Arafeh-Dalmau, N. et al. Integrating climate adaptation and transboundary management: guidelines for designing climate-smart marine protected areas. One Earth 6, 1523–1541 (2023).

    Article 

    Google Scholar
     

  197. Boothroyd, A., Adams, V., Alexander, K. & Hill, N. Benefits and risks of incremental protected area planning in the Southern Ocean. Nat. Sustain. 6, 696–705 (2023).

    Article 

    Google Scholar
     

  198. Pulp Mills on the River Uruguay (Argentina v. Uruguay). International Court of Justice https://www.icj-cij.org/case/135 (2010).

  199. Harris, J. L., Estradivari, E., Fox, H. E., McCarthy, O. S. & Ahmadia, G. N. Planning for the future: incorporating global and local data to prioritize coral reef conservation. Aquat. Conserv. 27, 65–77 (2017).

    Article 

    Google Scholar
     

  200. Adams, V. M. et al. Scheduling incremental actions to build a comprehensive national protected area network for Papua New Guinea. Conserv. Sci. Pract. 3, e354 (2021).

    Article 

    Google Scholar
     

  201. Gaymer, C. F. et al. Merging top-down and bottom-up approaches in marine protected areas planning: experiences from around the globe. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 128–144 (2014).

    Article 

    Google Scholar
     

  202. Li, B. V. & Pimm, S. L. How China expanded its protected areas to conserve biodiversity. Curr. Biol. 30, R1334–R1340 (2020).

    Article 
    CAS 

    Google Scholar
     

  203. Lagabrielle, E., Lombard, A. T., Harris, J. M. & Livingstone, T.-C. Multi-scale multi-level marine spatial planning: a novel methodological approach applied in South Africa. PLoS ONE 13, e0192582 (2018).

    Article 

    Google Scholar
     

  204. Pressey, R. L., Mills, M., Weeks, R. & Day, J. C. The plan of the day: managing the dynamic transition from regional conservation designs to local conservation actions. Biol. Conserv. 166, 155–169 (2013).

    Article 

    Google Scholar
     

  205. Kadykalo, A. N., Cooke, S. J. & Young, N. The role of western-based scientific, Indigenous and local knowledge in wildlife management and conservation. People Nat. 3, 610–626 (2021).

    Article 

    Google Scholar
     

  206. Cámara-Leret, R. & Dennehy, Z. Information gaps in indigenous and local knowledge for science-policy assessments. Nat. Sustain. 2, 736–741 (2019).

    Article 

    Google Scholar
     

  207. Chaplin-Kramer, R. et al. Transformation for inclusive conservation: evidence on values, decisions, and impacts in protected areas. Curr. Opin. Environ. Sustain. 64, 101347 (2023).

    Article 

    Google Scholar
     

  208. Lynch, A. J. et al. Managing for RADical ecosystem change: applying the resist–accept–direct (RAD) framework. Front. Ecol. Environ. 19, 461–469 (2021).

    Article 

    Google Scholar
     

  209. Ward, N. K. et al. Reimagining large river management using the resist–accept–direct (RAD) framework in the Upper Mississippi River. Ecol. Process. 12, 48 (2023).

    Article 

    Google Scholar
     

  210. Handler, S. D., Ledee, O. E., Hoving, C. L., Zuckerberg, B. & Swanston, C. W. A menu of climate change adaptation actions for terrestrial wildlife management. Wildl. Soc. Bull. 46, e1331 (2022).

    Article 

    Google Scholar
     

  211. Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

    Article 

    Google Scholar
     

  212. Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdisc. Rev. Clim. 10, e551 (2019).

    Article 

    Google Scholar
     

  213. Muhling, B. A. et al. Predictability of species distributions deteriorates under novel environmental conditions in the California Current System. Front. Mar. Sci. 7, 589 (2020).

    Article 

    Google Scholar
     

  214. Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 

    Google Scholar
     

  215. Patrício, A. R., Hawkes, L. A., Monsinjon, J. R., Godley, B. J. & Fuentes, M. M. P. B. Climate change and marine turtles: recent advances and future directions. Endanger. Species Res. 44, 363–395 (2021).

    Article 

    Google Scholar
     

  216. Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. https://doi.org/10.1029/2011GL050087 (2012).

  217. García-Roselló, E., González-Dacosta, J. & Lobo, J. M. The biased distribution of existing information on biodiversity hinders its use in conservation, and we need an integrative approach to act urgently. Biol. Conserv. 283, 110118 (2023).

    Article 

    Google Scholar
     

  218. Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42 (2017).


    Google Scholar
     

  219. Tulloch, V. J. D. et al. Minimizing cross-realm threats from land-use change: a national-scale conservation framework connecting land, freshwater and marine systems. Biol. Conserv. 254, 108954 (2021).

    Article 

    Google Scholar
     

  220. Makino, A. et al. The effect of applying alternate IPCC climate scenarios to marine reserve design for range changing species. Conserv. Lett. 8, 320–328 (2015).

    Article 

    Google Scholar
     

  221. Rose, N.-A. & Burton, P. J. Using bioclimatic envelopes to identify temporal corridors in support of conservation planning in a changing climate. For. Ecol. Manag. 258, S64–S74 (2009).

    Article 

    Google Scholar
     

Download references

Acknowledgements

We thank H. Possingham for providing constructive comments on this manuscript. J.O.H. was supported by Environment and Climate Change Canada (ECCC) and the Natural Sciences and Engineering Research Council (NSERC). K.L.S. was supported by an Australian Research Council Discovery Early Career Researcher Award (DECRA). S.N. was supported through a QUEX scholarship, a joint initiative of The University of Queensland and the University of Exeter.

Author information

Authors and Affiliations

Authors

Contributions

K.C.V.B. and A.P. researched data for the article. K.C.V.B., A.J.R., D.C.D., A.M., D.S.S., J.D.E., J.O.H. and L.K.B. contributed substantially to discussion of the content. K.C.V.B., with help from D.C.D., A.J.R., D.S.S., S.W.K., S.N. and A.D., wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to
Kristine Camille V. Buenafe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Vanessa Adams, Derek Tittensor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buenafe, K.C.V., Dunn, D.C., Metaxas, A. et al. Current approaches and future opportunities for climate-smart protected areas.
Nat. Rev. Biodivers. (2025). https://doi.org/10.1038/s44358-025-00041-0

Download citation

  • Accepted: 17 March 2025

  • Published: 08 April 2025

  • DOI: https://doi.org/10.1038/s44358-025-00041-0

 

Search

RECENT PRESS RELEASES