Ecomorphodynamics of coastal foredune evolution

May 22, 2025

Abstract

Globally, along sandy coastlines, foredunes support ecosystem services including provision of habitat and protection of communities from waves and storm surge. In this Review, we discuss the interactions between sand transport and vegetation processes (ecomorphodynamics) that give rise to the foredune-building feedback as illuminated by empirical and modelling studies. Foredune shape and alongshore continuity depend primarily on sand supply, vegetation density and growth form. For instance, low-lying, creeping herbaceous species tend to form short embryo dunes, whereas tall, dense grasses that grow vertically tend to form tall, narrow foredunes. Climate and weather events, herbivory and anthropogenic disturbances of varying scale affect the foredune-building feedback. For example, small local scale disturbances, such as herbivory or trampling, cause local vegetation loss and erosion. Management activities, such as beach nourishment, can increase foredune sand supply, leading to foredune rebuilding, although the presence of infrastructure on the back beach can inhibit foredune development. At a regional scale, hurricanes and tropical storms cause substantial dune erosion and overwash, potentially resetting the foredune-building process. Sea-level rise exacerbates the effects of storms, leading to increased erosion, saltwater intrusion and a potential landward shift in foredune location. Future research should prioritize integrated ecomorphodynamic observations and modelling to fill critical knowledge gaps and address the effects of changing climate on the foredune-building process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sand transport and vegetation processes across the beach–dune system.
Fig. 2: Foredune growth rate and development.
Fig. 3: Physical processes associated with beach–foredune interactions.
Fig. 4: Biotic processes important to foredune development.
Fig. 5: Common dune-building plant species.

Similar content being viewed by others

References

  1. de Freitas, J. G. A Global Environmental History of Coastal Dunes https://doi.org/10.4324/9781003317388 (Routledge, 2024).

  2. Luijendijk, A. et al. The state of the world’s beaches. Sci. Rep. 8, 6641 (2018).

    Article 

    Google Scholar
     

  3. Sallenger, A. H. Storm impact scale for barrier islands. J. Coast. Res. 16, 890–895 (2000).


    Google Scholar
     

  4. Green, M. D. & Miller, T. E. Germination traits explain deterministic processes in the assembly of early successional coastal dune vegetation. Estuar. Coast. 42, 1097–1103 (2019).

    Article 

    Google Scholar
     

  5. Miller, D. L., Thetford, M. & Schneider, M. Distance from the Gulf influences survival and growth of three barrier island dune plants. J. Coast. Res. 4, 261–266 (2008).

    Article 

    Google Scholar
     

  6. Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Change 3, 913–918 (2013).

    Article 

    Google Scholar
     

  7. Ruggiero, P., Komar, P. D., McDougal, W. G., Marra, J. J. & Beach, R. A. Wave runup, extreme water levels and the erosion of properties backing beaches. J. Coast. Res. 17, 407–419 (2001).


    Google Scholar
     

  8. Biel, R. G., Hacker, S. D., Ruggiero, P., Cohn, N. & Seabloom, E. W. Coastal protection and conservation on sandy beaches and dunes: context�dependent tradeoffs in ecosystem service supply. Ecosphere 8, 1791 (2017).

    Article 

    Google Scholar
     

  9. Itzkin, M. Anthropogenic influences on coastal dune dynamics: exploring past and future effects of management interventions on a developed barrier island (The University of North Carolina at Chapel Hill, 2021).

  10. Carranza, M. L. et al. Assessing land take and its effects on dune carbon pools. An insight into the Mediterranean coastline. Ecol. Indic. 85, 951–955 (2018).

    Article 
    CAS 

    Google Scholar
     

  11. Jay, K. et al. Quantifying the relative importance of sand deposition and dune grasses to carbon storage in US Central Atlantic Coast dunes. Estuar. Coast. 48, 60 (2025).

    Article 
    CAS 

    Google Scholar
     

  12. Gieder, K. D. et al. A Bayesian network approach to predicting nest presence of the federally-threatened piping plover (Charadrius melodus) using barrier island features. Ecol. Model. 276, 38–50 (2014).

    Article 

    Google Scholar
     

  13. McLachlan, A. Ecology of coastal dune fauna. J. Arid. Environ. 21, 229–243 (1991).

    Article 

    Google Scholar
     

  14. Zarnetske, P. L., Seabloom, E. W. & Hacker, S. D. Non�target effects of invasive species management: beachgrass, birds, and bulldozers in coastal dunes. Ecosphere 1, 1–20 (2010).

    Article 

    Google Scholar
     

  15. Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article 

    Google Scholar
     

  16. Drius, M. et al. Not just a sandy beach. The multi-service value of Mediterranean coastal dunes. Sci. Total Environ. 668, 1139–1155 (2019).

    Article 
    CAS 

    Google Scholar
     

  17. Solan, M. et al. Biological–physical interactions are fundamental to understanding and managing coastal dynamics. R. Soc. Open Sci. 10, 230155 (2023).

    Article 

    Google Scholar
     

  18. Farrell, E. J., Delgado Fernandez, I., Smyth, T., Li, B. & Swann, C. Contemporary research in coastal dunes and aeolian processes. Earth Surf. Process. Landf. 49, 108–116 (2024).

    Article 

    Google Scholar
     

  19. Short, A. D. & Hesp, P. A. Wave, beach and dune interactions in southeastern Australia. Mar. Geol. 48, 259–284 (1982).

    Article 

    Google Scholar
     

  20. Psuty, N. P. Holocene sea level in New Jersey. Phys. Geogr. 7, 156–167 (1986).

    Article 

    Google Scholar
     

  21. Hesp, P. A. A review of biological and geomorphological processes involved in the initiation and development of incipient foredunes. Proc. R. Soc. Edinb. Sect. B Biol. Sci. 96, 181–201 (1989).

    Article 

    Google Scholar
     

  22. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022 — Impacts, Adaptation and Vulnerability Vol. 3056 https://doi.org/10.1017/9781009325844 (Cambridge Univ. Press, 2023).

  23. Sweet, W. V. et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. 111 (2022).

  24. Knutson, T. R., Sirutis, J. J., Bender, M. A., Tuleya, R. E. & Schenkel, B. A. Dynamical downscaling projections of late twenty-first-century U.S. landfalling hurricane activity. Clim. Change 171, 28 (2022).

    Article 

    Google Scholar
     

  25. Garcia-Lozano, C., Pintó, J. & Roig-Munar, F. X. Set of indices to assess dune development and dune restoration potential in beach–dune systems on Mediterranean developed coasts. J. Environ. Manage. 259, 109754 (2020).

    Article 

    Google Scholar
     

  26. Nordstrom, K. Beach and Dune Restoration (Cambridge Univ. Press, 2008).

  27. Derijckere, J., Strypsteen, G. & Rauwoens, P. Early-stage development of an artificial dune with varying plant density and distribution. Geomorphology 437, 108806 (2023).

    Article 

    Google Scholar
     

  28. Anarde, K. A., Moore, L. J., Murray, A. B. & Reeves, I. R. B. The future of developed barrier systems: 1. Pathways toward uninhabitability, drowning, and rebound. Earth’s Future 12, 2023EF003672 (2024).

    Article 

    Google Scholar
     

  29. Anarde, K. A., Moore, L. J., Murray, A. B. & Reeves, I. R. B. The future of developed barrier systems: 2. Alongshore complexities and emergent climate change dynamics. Earth’s Future 12, 2023EF004200 (2024).

    Article 

    Google Scholar
     

  30. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. European Union http://data.europa.eu/eli/dir/1992/43/2013-07-01 (1992).

  31. Robin, N. et al. 150 years of foredune initiation and evolution driven by human and natural processes. Geomorphology 374, 107516 (2021).

    Article 

    Google Scholar
     

  32. Zinnert, J. C. et al. Connectivity in coastal systems: barrier island vegetation influences upland migration in a changing climate. Glob. Change Biol. 25, 2419–2430 (2019).

    Article 

    Google Scholar
     

  33. Reeves, I. R. B., Moore, L. J., Murray, A. B., Anarde, K. A. & Goldstein, E. B. Dune dynamics drive discontinuous barrier retreat. Geophys. Res. Lett. 48, e2021GL092958 (2021).

    Article 

    Google Scholar
     

  34. Zarnetske, P. L. et al. Biophysical feedback mediates effects of invasive grasses on coastal dune shape. Ecology 93, 1439–1450 (2012).

    Article 

    Google Scholar
     

  35. Durán, O. & Moore, L. J. Vegetation controls on the maximum size of coastal dunes. Proc. Natl Acad. Sci. USA 110, 17217–17222 (2013).

    Article 

    Google Scholar
     

  36. Wasson, R. J. & Nanninga, P. M. Estimating wind transport of sand on vegetated surfaces. Earth Surf. Process. Landf. 11, 505–514 (1986).

    Article 

    Google Scholar
     

  37. Kuriyama, Y., Mochizuki, N. & Nakashima, T. Influence of vegetation on aeolian sand transport rate from a backshore to a foredune at Hasaki, Japan. Sedimentology 52, 1123–1132 (2005).

    Article 

    Google Scholar
     

  38. Lancaster, N. & Baas, A. Influence of vegetation cover on sand transport by wind: field studies at Owens Lake, California. Earth Surf. Process. Landf. 23, 69–82 (1998).

    Article 

    Google Scholar
     

  39. Maun, M. A. Adaptations of plants to burial in coastal sand dunes. Can. J. Bot. 76, 713–738 (1998).


    Google Scholar
     

  40. Hesp, P. Foredunes and blowouts: initiation, geomorphology and dynamics. Geomorphology 48, 245–268 (2002).

    Article 

    Google Scholar
     

  41. Bressolier, C. & Thomas, Y.-F. Studies on wind and plant interactions on French Atlantic coastal dunes. SEPM J. Sediment. Res. 47, 331–338 (1977).


    Google Scholar
     

  42. Pethick, J. An Introduction to Coastal Geomorphology Vol. 260 (Edward Arnold, 1984).

  43. Hilton, M. & Konlechner, T. Incipient foredunes developed from marine-dispersed rhizome of Ammophilia arenaria. J. Coast. Res. 1, 288–292 (2011).


    Google Scholar
     

  44. Olson, J. S. Lake Michigan dune development 1. Wind-velocity profiles. J. Geol. 66, 254–263 (1958).

    Article 

    Google Scholar
     

  45. Hesp, P. A. & Smyth, T. A. G. CFD flow dynamics over model scarps and slopes. Phys. Geogr. 42, 1–24 (2021).

    Article 

    Google Scholar
     

  46. Otvos, E. G. Coastal barriers — nomenclature, processes, and classification issues. Geomorphology 139–140, 39–52 (2012).

    Article 

    Google Scholar
     

  47. Ruggiero, P., Kaminsky, G. M., Gelfenbaum, G. & Voigt, B. Seasonal to interannual morphodynamics along a high-energy dissipative littoral cell. J. Coast. Res. 2005, 553–578 (2005).

    Article 

    Google Scholar
     

  48. Moore, L. J., Vinent, O. D. & Ruggiero, P. Vegetation control allows autocyclic formation of multiple dunes on prograding coasts. Geology 44, 559–562 (2016).

    Article 

    Google Scholar
     

  49. Houser, C. et al. Post-storm beach and dune recovery: implications for barrier island resilience. Geomorphology 234, 54–63 (2015).

    Article 

    Google Scholar
     

  50. Robin, N. et al. Natural remobilization and historical evolution of a modern coastal transgressive dunefield. Earth Surf. Process. Landf. 48, 1064–1083 (2023).

    Article 

    Google Scholar
     

  51. Itzkin, M., Moore, L. J., Ruggiero, P., Hacker, S. D. & Biel, R. G. The relative influence of dune aspect ratio and beach width on dune erosion as a function of storm duration and surge level. Earth Surf. Dyn. 9, 1223–1237 (2021).

    Article 

    Google Scholar
     

  52. de Vries, S., Southgate, H. N., Kanning, W. & Ranasinghe, R. Dune behavior and aeolian transport on decadal timescales. Coast. Eng. 67, 41–53 (2012).

    Article 

    Google Scholar
     

  53. Davidson�Arnott, R. et al. Sediment budget controls on foredune height: comparing simulation model results with field data. Earth Surf. Process. Landf. 43, 1798–1810 (2018).

    Article 

    Google Scholar
     

  54. Walker, I. J. et al. Scale-dependent perspectives on the geomorphology and evolution of beach–dune systems. Earth-Sci. Rev. 171, 220–253 (2017).

    Article 

    Google Scholar
     

  55. Masselink, G., Hughes, M. & Knight, J. Introduction to Coastal Processes and Geomorphology https://doi.org/10.4324/9780203785461 (Routledge, 2014).

  56. Cowell, P. J. et al. The coastal-tract (part 1): a conceptual approach to aggregated modeling of low-order coastal change. J. Coast. Res. 19, 812–827 (2003).


    Google Scholar
     

  57. Martinez, M. L., Psuty, N. P. & Lubke, R. A. What are sand dunes? In Coastal Dunes: Ecology and Conservation 3–10 (Springer, 2004).

  58. Martinez, M. L., Gallego-Fernandez, J. B., Garcia-Franco, J. G., Moctezuma, C. & Jimenez, C. D. Assessment of coastal dune vulnerability to natural and anthropogenic disturbances along the Gulf of Mexico. Environ. Conserv. 33, 109–117 (2006).

    Article 

    Google Scholar
     

  59. Hesp, P. A. Coastal dunes in the tropics and temperate regions: location, formation, morphology and vegetation processes. In Coastal Dunes: Ecology and Conservation (eds Martínez, M. L. & Psuty, N. P.) 29–49 (Springer, 2004).

  60. Delgado-Fernandez, I. & Davidson-Arnott, R. Meso-scale aeolian sediment input to coastal dunes: the nature of aeolian transport events. Geomorphology 126, 217–232 (2011).

    Article 

    Google Scholar
     

  61. Psuty, N. Spatial variation in coastal foredune development. In Proc. of the Third European Dunes Congress, Galway 1992, 3–13 (1992).

  62. Hesp, P. A. Foredune formation in southeast Australia. in Coastal Geomorphology in Australia (ed. Thom, B. G.) 69–97 (Academic Press, 1984).

  63. Hacker, S. D. et al. Subtle differences in two non�native congeneric beach grasses significantly affect their colonization, spread, and impact. Oikos 121, 138–148 (2012).

    Article 

    Google Scholar
     

  64. Zarnetske, P. L., Ruggiero, P., Seabloom, E. W. & Hacker, S. D. Coastal foredune evolution: the relative influence of vegetation and sand supply in the US Pacific Northwest. J. R. Soc. Interface 12, 20150017 (2015).

    Article 

    Google Scholar
     

  65. Biel, R. G., Hacker, S. D. & Ruggiero, P. Elucidating coastal foredune ecomorphodynamics in the U.S. Pacific Northwest via Bayesian networks. J. Geophys. Res. Earth Surf. 124, 1919–1938 (2019).

    Article 

    Google Scholar
     

  66. Jay, K. R., Hacker, S. D., Hovenga, P. A., Moore, L. J. & Ruggiero, P. Sand supply and dune grass species density affect foredune shape along the US Central Atlantic Coast. Ecosphere https://doi.org/10.1002/ecs2.4256 (2022).

  67. Hallin, C., Huisman, B. J. A., Larson, M., Walstra, D.-J. R. & Hanson, H. Impact of sediment supply on decadal-scale dune evolution — analysis and modelling of the Kennemer dunes in the Netherlands. Geomorphology 337, 94–110 (2019).

    Article 

    Google Scholar
     

  68. Bagnold, R. The size-garding of sand by wind. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 163, 250–264 (1937).


    Google Scholar
     

  69. Bagnold, R. The movement of desert sand. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 157, 594–620 (1936).


    Google Scholar
     

  70. Lettau, K. & Lettau, H. H. (eds) Experimental and Micro-meteorological Field Studies of Dune Migration: Exploring the World’s Driest Climate. IES Report 101, 110–147 (University of Wisconsin-Madison, Institute for Environmental Studies, 1978).

  71. Davidson-Arnott, R. G. D. & Law, M. N. Seasonal patterns and controls on sediment supply to coastal foredunes, Long Point, Lake Erie. in Coastal Dunes: Form and Process (eds Nordstrom, K. F., Psuty, N. P. & Carter, R. W. G.) 177 (Wiley, 1990).

  72. de Vries, S., van Thiel de Vries, J. S. M., van Rijn, L. C., Arens, S. M. & Ranasinghe, R. Aeolian sediment transport in supply limited situations. Aeolian Res. 12, 75–85 (2014).

    Article 

    Google Scholar
     

  73. Delgado-Fernandez, I. A review of the application of the fetch effect to modelling sand supply to coastal foredunes. Aeolian Res. 2, 61–70 (2010).

    Article 

    Google Scholar
     

  74. Bauer, B. O. & Davidson-Arnott, R. G. D. A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry, and fetch effects. Geomorphology 49, 89–108 (2003).

    Article 

    Google Scholar
     

  75. Hovenga, P. A., Ruggiero, P., Goldstein, E. B., Hacker, S. D. & Moore, L. J. The relative role of constructive and destructive processes in dune evolution on Cape Lookout National Seashore, North Carolina, USA. Earth Surf. Process. Landf. 46, 2824–2840 (2021).

    Article 

    Google Scholar
     

  76. Swann, C., Lee, D., Trimble, S. & Key, C. Aeolian sand transport over a wet, sandy beach. Aeolian Res. 51, 100712 (2021).

    Article 

    Google Scholar
     

  77. Wolner, C. W. V. et al. Ecomorphodynamic feedbacks and barrier island response to disturbance: insights from the Virginia Barrier Islands, Mid-Atlantic Bight, USA. Geomorphology 199, 115–128 (2013).

    Article 

    Google Scholar
     

  78. Kombiadou, K., Costas, S. & Roelvink, D. Exploring controls on coastal dune growth through a simplified model. J. Geophys. Res. Earth Surf. 128, e2023JF007080 (2023).

    Article 

    Google Scholar
     

  79. van Westen, B. et al. AeoLiS: numerical modelling of coastal dunes and aeolian landform development for real-world applications. Environ. Model. Softw. 179, 106093 (2024).

    Article 

    Google Scholar
     

  80. Hallin, C., IJzendoorn, C., van, Homberger, J.-M. & de Vries, S. Simulating surface soil moisture on sandy beaches. Coast. Eng. 185, 104376 (2023).

    Article 

    Google Scholar
     

  81. van IJzendoorn, C. O., Hallin, C., Reniers, A. J. H. M. & de Vries, S. Modeling multi�fraction coastal aeolian sediment transport with horizontal and vertical grain�size variability. J. Geophys. Res. Earth Surf. 128, 2023JF007155 (2023).

    Article 

    Google Scholar
     

  82. Davidson, S. G., Hesp, P. A. & da Silva, G. M. Controls on dune scarping. Prog. Phys. Geogr. Earth Environ. 44, 923–947 (2020).

    Article 

    Google Scholar
     

  83. Cohn, N., Ruggiero, P., de Vries, S. & Kaminsky, G. M. New insights on coastal foredune growth: the relative contributions of marine and aeolian processes. Geophys. Res. Lett. 45, 4965–4973 (2018).

    Article 

    Google Scholar
     

  84. Roelvink, D. & Costas, S. Coupling nearshore and aeolian processes: XBeach and Duna process-based models. Environ. Model. Softw. 115, 98–112 (2019).

    Article 

    Google Scholar
     

  85. Keijsers, J. G. S., De Groot, A. V. & Riksen, M. J. P. M. Modeling the biogeomorphic evolution of coastal dunes in response to climate change. J. Geophys. Res. Earth Surf. 121, 1161–1181 (2016).

    Article 

    Google Scholar
     

  86. Cohn, N. et al. Exploring marine and aeolian controls on coastal foredune growth using a coupled numerical model. J. Mar. Sci. Eng. 7, 13 (2019).

    Article 

    Google Scholar
     

  87. Ruggiero, P. et al. Simulating dune evolution on managed coastlines: exploring management options with the Coastal Recovery from Storms Tool (CReST). Shore Beach 87, 36–43 (2019).

    Article 

    Google Scholar
     

  88. Doing, H. Coastal fore-dune zonation and succession in various parts of the world. in Ecology of Coastal Vegetation (eds Beeftink, W. G., Rozema, J. & Huiskes, A. H. L.) 65–75, https://doi.org/10.1007/978-94-009-5524-0_7 (Springer Netherlands, 1985).

  89. Maun, M. A. The Biology of Coastal Sand Dunes (Oxford Univ. Press, 2009).

  90. Brunbjerg, A. K. et al. Multi-scale phylogenetic structure in coastal dune plant communities across the globe. J. Plant. Ecol. 7, 101–114 (2014).

    Article 

    Google Scholar
     

  91. Mahdavi, P. & Bergmeier, E. Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions. Acta Oecol. 74, 37–45 (2016).

    Article 

    Google Scholar
     

  92. Cowling, R. M., Logie, C., Brady, J., Middleton, M. & Grobler, B. A. Taxonomic, biological and geographical traits of species in a coastal dune flora in the southeastern Cape Floristic Region: regional and global comparisons. PeerJ 7, e7336 (2019).

    Article 

    Google Scholar
     

  93. Wiedemann, A. M. & Pickart, A. J. Temperate zone coastal dunes. in Coastal Dunes: Ecology and Conservation (eds Martínez, M. L. & Psuty, N. P.) 53–65, https://doi.org/10.1007/978-3-540-74002-5_4 (Springer, 2008).

  94. Lubke, R. A. Current state of Ammophila arenaria (Marram Grass) distribution in the Eastern Cape, South Africa, and the possible effect of the grass on the dune system dynamics. Plants 11, 2260 (2022).

    Article 

    Google Scholar
     

  95. Cerda-Paredes, J. M., Ginocchio, R. & Fariña, J. M. Coexistence of Ambrosia chamissonis and Ammophila arenaria in coastal dunes in the Ñuble Region, Chile. Flora 310, 152447 (2024).

    Article 

    Google Scholar
     

  96. Oosting, H. J. & Billings, W. D. Factors effecting vegetational zonation on coastal dunes. Ecology 23, 131–142 (1942).

    Article 
    CAS 

    Google Scholar
     

  97. van der Maarel, E. Some remarks on disturbance and its relations to diversity and stability. J. Veg. Sci. 4, 733–736 (1993).

    Article 

    Google Scholar
     

  98. García-Mora, M. R., Gallego-Fernández, J. B. & García-Novo, F. Plant functional types in coastal foredunes in relation to environmental stress and disturbance. J. Veg. Sci. 10, 27–34 (1999).

    Article 

    Google Scholar
     

  99. Miller, T. E., Gornish, E. S. & Buckley, H. L. Climate and coastal dune vegetation: disturbance, recovery, and succession. Plant. Ecol. 206, 97–104 (2010).

    Article 

    Google Scholar
     

  100. Costas, S., Gallego-Fernández, J. B., Bon de Sousa, L. & Kombiadou, K. Ecogeomorphic response of a coastal dune in southern Portugal regulated by extrinsic factors. CATENA 221, 106796 (2023).

    Article 
    CAS 

    Google Scholar
     

  101. Costas, S., Bon de Sousa, L., Gallego-Fernández, J. B., Hesp, P. & Kombiadou, K. Foredune initiation and early development through biophysical interactions. Sci. Total Environ. 940, 173548 (2024).

    Article 
    CAS 

    Google Scholar
     

  102. Young, D. R., Brantley, S. T., Zinnert, J. C. & Vick, J. K. Landscape position and habitat polygons in a dynamic coastal environment. Ecosphere 2, art71 (2011).

    Article 

    Google Scholar
     

  103. Torca, M., Campos, J. A. & Herrera, M. Changes in plant diversity patterns along dune zonation in south Atlantic European coasts. Estuar. Coast. Shelf Sci. 218, 39–47 (2019).

    Article 

    Google Scholar
     

  104. Ehrenfeld, J. G. Dynamics and processes of barrier island vegetation. Aquat. Sci. 2, 437–480 (1990).


    Google Scholar
     

  105. Constant, V. Coastal Dunes as Meta-Ecosystems: Connecting Marine Subsidies to Dune Ecosystem Functions on the U.S. Pacific Northwest Coast. PhD thesis, Oregon State Univ. (2019).

  106. Kachi, N. & Hirose, T. Limiting nutrients for plant growth in coastal sand dune soils. J. Ecol. 71, 937 (1983).

    Article 

    Google Scholar
     

  107. Kooijman, A. M. & Besse, M. The higher availability of N and P in lime�poor than in lime�rich coastal dunes in the Netherlands. J. Ecol. 90, 394–403 (2002).

    Article 
    CAS 

    Google Scholar
     

  108. Pakeman, R. J. & Lee, J. A. The ecology of the strandline annuals Cakile Maritima and Salsola Kali. II. The role of nitrogen in controlling plant performance. J. Ecol. 79, 155–165 (1991).

    Article 

    Google Scholar
     

  109. Boorman, L. A. & Fuller, R. M. Effects of added nutrients on dune swards grazed by rabbits. J. Ecol. 70, 345 (1982).

    Article 

    Google Scholar
     

  110. Harkel, M. J. & Van Der Meulen, F. Impact of grazing and atmospheric nitrogen deposition on the vegetation of dry coastal dune grasslands. Vol. 6, 445–452 (1995).

  111. Kooijman, A. M., Dopheide, J. C. R., Sevink, J., Takken, I. & Verstraten, J. M. Nutrient limitations and their implications on the effects of atmospheric deposition in coastal dunes; lime�poor and lime�rich sites in the Netherlands. J. Ecol. 86, 511–526 (1998).

    Article 

    Google Scholar
     

  112. Jones, M. L. M. et al. Changes in vegetation and soil characteristics in coastal sand dunes along a gradient of atmospheric nitrogen deposition. Plant Biol. 6, 598–605 (2004).

    Article 
    CAS 

    Google Scholar
     

  113. van den Berg, L. J. L., Tomassen, H. B. M., Roelofs, J. G. M. & Bobbink, R. Effects of nitrogen enrichment on coastal dune grassland: a mesocosm study. Environ. Pollut. 138, 77–85 (2005).

    Article 

    Google Scholar
     

  114. Dugan, J. E., Hubbard, D. M., Page, H. M. & Schimel, J. P. Marine macrophyte wrack inputs and dissolved nutrients in beach sands. Estuar. Coast. 34, 839–850 (2011).

    Article 
    CAS 

    Google Scholar
     

  115. Del Vecchio, S., Marbà, N., Acosta, A., Vignolo, C. & Traveset, A. Effects of Posidonia oceanica beach-cast on germination, growth and nutrient uptake of coastal dune plants. PLoS ONE 8, e70607 (2013).

    Article 

    Google Scholar
     

  116. Hemminga, M. A. & Nieuwenhuize, J. Seagrass wrack-induced dune formation on a tropical coast (Banc d’Arguin, Mauritania). Estuar. Coast. Shelf Sci. 31, 499–502 (1990).

    Article 

    Google Scholar
     

  117. Joyce, M. A. et al. Wrack enhancement of post-hurricane vegetation and geomorphological recovery in a coastal dune. PLoS ONE 17, e0273258 (2022).

    Article 
    CAS 

    Google Scholar
     

  118. Nordstrom, K. F., Jackson, N. L., Freestone, A. L., Korotky, K. H. & Puleo, J. A. Effects of beach raking and sand fences on dune dimensions and morphology. Geomorphology 179, 106–115 (2012).

    Article 

    Google Scholar
     

  119. van Egmond, E. M. et al. Growth of pioneer beach plants is strongly driven by buried macroalgal wrack, whereas macroinvertebrates affect plant nutrient dynamics. J. Exp. Mar. Biol. Ecol. 514–515, 87–94 (2019).

    Article 

    Google Scholar
     

  120. Day, F. P., Conn, C., Crawford, E. & Stevenson, M. Long-term effects of nitrogen fertilization on plant community structure on a coastal barrier island dune chronosequence. J. Coast. Res. 20, 722–730 (2004).

    Article 

    Google Scholar
     

  121. Ripley, B. S. & Pammenter, N. W. Do low standing biomass and leaf area index of sub-tropical coastal dunes ensure that plants have an adequate supply of water? Oecologia 139, 535–544 (2004).

    Article 

    Google Scholar
     

  122. Greaver, T. L. & Sternberg, L. S. L. Fluctuating deposition of ocean water drives plant function on coastal sand dunes. Glob. Change Biol. 13, 216–223 (2007).

    Article 

    Google Scholar
     

  123. Parida, A. K. & Das, A. B. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60, 324–349 (2005).

    Article 
    CAS 

    Google Scholar
     

  124. Lum, T. D. & Barton, K. E. Ontogenetic variation in salinity tolerance and ecophysiology of coastal dune plants. Ann. Bot. 125, 301–314 (2019).


    Google Scholar
     

  125. Feagin, R. A., Sherman, D. J. & Grant, W. E. Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats. Front. Ecol. Environ. 3, 359–359 (2005).

    Article 

    Google Scholar
     

  126. Gilbert, M. E. & Ripley, B. S. Biomass reallocation and the mobilization of leaf resources support dune plant growth after sand burial. Physiol. Plant. 134, 464–472 (2008).

    Article 
    CAS 

    Google Scholar
     

  127. Brown, J. F. Effects of experimental burial on survival, growth, and resource allocation of three species of dune plants. J. Ecol. 85, 151 (1997).

    Article 

    Google Scholar
     

  128. Maun, M. A., Elberling, H. & D’Ulisse, A. The effects of burial by sand on survival and growth of Pitcher’s thistle (Cirsium pitcheri) along Lake Huron. J. Coast. Conserv. 2, 3–12 (1996).

    Article 

    Google Scholar
     

  129. Brown, J. K. & Zinnert, J. C. Mechanisms of surviving burial: dune grass interspecific differences drive resource allocation after sand deposition. Ecosphere https://doi.org/10.1002/ecs2.2162 (2018).

  130. Frosini, S., Lardicci, C. & Balestri, E. Global change and response of coastal dune plants to the combined effects of increased sand accretion (burial) and nutrient availability. PLoS ONE 7, e47561 (2012).

    Article 
    CAS 

    Google Scholar
     

  131. Müller, I., Schmid, B. & Weiner, J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect. Plant Ecol. Evol. Syst. 3, 115–127 (2000).

    Article 

    Google Scholar
     

  132. Woodhouse, W. W. & Hanes, R. E. Dune Stabilization with Vegetation on the Outer Banks of North Carolina (US Army, Corps of Engineers, Coastal Engineering Research Center, 1967).

  133. Seneca, E. D., Woodhouse, W. W. Jr & Broome, S. W. Dune Stabilization with Panicum amarum along the North Carolina Coast (US Army, Corps of Engineering Research Center, 1976).

  134. Woodhouse, W. W. Dune Building and Stabilization with Vegetation. https://doi.org/10.5962/bhl.title.46585 (US Army, Corps of Engineers, Coastal Engineering Research Center, 1978).

  135. Woodhouse, W. W., Seneca, E. D. & Broome, S. W. Effect of species on dune grass growth. Int. J. Biometeorol. 21, 256–266 (1977).

    Article 

    Google Scholar
     

  136. Mullins, E. et al. Investigating dune�building feedback at the plant level: insights from a multispecies field experiment. Earth Surf. Process. Landf. 44, 1734–1747 (2019).

    Article 

    Google Scholar
     

  137. Laporte-Fauret, Q. et al. Experimental test of the influence of native and non-native plant species on sand accretion on a U.S. Pacific northwest dune. in Coastal Sediments 2023, 627–641 https://doi.org/10.1142/9789811275135_0059 (World Scientific, 2023).

  138. Godfrey, P. J. Climate, plant response and development of dunes on barrier beaches along the U.S. east coast. Int. J. Biometeorol. 21, 203–216 (1977).

    Article 

    Google Scholar
     

  139. Goldstein, E. B., Moore, L. J. & Durán Vinent, O. Vegetation controls on maximum coastal foredune ‘hummockiness’ and annealing time. Earth Surf. Dyn. 5, 417–427 (2017).

    Article 

    Google Scholar
     

  140. Buckley, R. The effect of sparse vegetation on the transport of dune sand by wind. Nature 325, 426–428 (1987).

    Article 

    Google Scholar
     

  141. Charbonneau, B. R. & Casper, B. B. Wind tunnel tests inform Ammophila planting spacing for dune management. Shore Beach 86, 37–46 (2018).


    Google Scholar
     

  142. Lammers, C., van de Ven, C. N., van der Heide, T. & Reijers, V. C. Are ecosystem engineering traits fixed or flexible: a study on clonal expansion strategies in co-occurring dune grasses. Ecosystems 26, 1195–1208 (2023).

    Article 

    Google Scholar
     

  143. Reijers, V. C. et al. A Lévy expansion strategy optimizes early dune building by beach grasses. Nat. Commun. 10, 2656 (2019).

    Article 

    Google Scholar
     

  144. Van Dijk, P. M., Arens, S. M. & Van Boxel, J. H. Aeolian processes across transverse dunes. II: modelling the sediment transport and profile development. Earth Surf. Process. Landf. 24, 319–333 (1999).

    Article 

    Google Scholar
     

  145. Hacker, S. D. et al. Species-specific functional morphology of four US Atlantic coast dune grasses: biogeographic implications for dune shape and coastal protection. Diversity 11, 82–82 (2019).

    Article 

    Google Scholar
     

  146. De Battisti, D. et al. Foredune-forming grass and plant diversity show contrasting responses along the southeastern United States coast after hurricane disturbance. J. Veg. Sci. 35, e13230 (2024).

    Article 

    Google Scholar
     

  147. Charbonneau, B. R., Duarte, A., Swannack, T. M., Johnson, B. D. & Piercy, C. D. DOONIES: a process-based ecogeomorphological functional community model for coastal dune vegetation and landscape dynamics. Geomorphology 398, 108037 (2022).

    Article 

    Google Scholar
     

  148. Dickey, J., Wengrove, M., Cohn, N., Ruggiero, P. & Hacker, S. D. Observations and modeling of shear stress reduction and sediment flux within sparse dune grass canopies on managed coastal dunes. Earth Surf. Process. Landf. 48, 907–922 (2023).

    Article 

    Google Scholar
     

  149. Heminway, S. S. et al. Exploring ecological, morphological, and environmental controls on coastal foredune evolution at annual scales using a process-based model. Sustainability 16, 3460 (2024).

    Article 

    Google Scholar
     

  150. Laporte-Fauret, Q. et al. A new approach to account for species-specific sand capture by plants in an aeolian sediment transport and coastal dune building model. J. Geophys. Res. Earth Surf. 129, e2024JF007867 (2024).

    Article 

    Google Scholar
     

  151. Forey, E. et al. The relative importance of disturbance and environmental stress at local and regional scales in French coastal sand dunes. J. Veg. Sci. 19, 493–502 (2008).

    Article 

    Google Scholar
     

  152. Ruggiero, P., Hacker, S., Seabloom, E. & Zarnetske, P. The role of vegetation in determining dune morphology, exposure to sea-level rise, and storm-induced coastal hazards: a U.S. Pacific Northwest perspective. in Barrier Dynamics and Response to Changing Climate (eds Moore, L. & Murray, A.) 337–361 https://doi.org/10.1007/978-3-319-68086-6_11 (Springer International Publishing, 2018).

  153. Gormally, C. L. & Donovan, L. A. Responses of Uniola paniculata L. (Poaceae), an essential dune-building grass, to complex changing environmental gradients on the coastal dunes. Estuar. Coast. 33, 1237–1246 (2010).

    Article 
    CAS 

    Google Scholar
     

  154. Biel, R. G. & Hacker, S. D. Warming alters the interaction of two invasive beachgrasses with implications for range shifts and coastal dune functions. Oecologia 197, 757–770 (2021).

    Article 

    Google Scholar
     

  155. Stallins, J. A. Stability domains in barrier island dune systems. Ecol. Complex. 2, 410–430 (2005).

    Article 

    Google Scholar
     

  156. Hesp, P. A. & Martínez, M. L. Disturbance processes and dynamics in coastal dunes. in Plant Disturbance Ecology (eds Johnson, E. A. & Miyanishi, K.) 215–247, https://doi.org/10.1016/B978-012088778-1/50009-1 (Academic Press, 2007).

  157. Gornish, E. S. & Miller, T. E. Using long-term census data to inform restoration methods for coastal dune vegetation. Estuar. Coast. 36, 1014–1023 (2013).

    Article 

    Google Scholar
     

  158. Bhattarai, G. P. & Cronin, J. T. Hurricane activity and the large-scale pattern of spread of an invasive plant species. PLoS ONE 9, e98478 (2014).

    Article 

    Google Scholar
     

  159. Maun, M. A. Burial of plants as a selective force in sand dunes. In Coastal Dunes: Ecology and Conservation (eds Martínez, M. L. & Psuty, N. P.) 119–135, https://doi.org/10.1007/978-3-540-74002-5_8 (Springer-Verlag, 2004).

  160. Emery, S. M. & Rudgers, J. A. Impacts of simulated climate change and fungal symbionts on survival and growth of a foundation species in sand dunes. Oecologia 173, 1601–1612 (2013).

    Article 

    Google Scholar
     

  161. Kilheffer, C. R. et al. Deer do not affect short-term rates of vegetation recovery in overwash fans on Fire Island after Hurricane Sandy. Ecol. Evol. 9, 11742–11751 (2019).

    Article 

    Google Scholar
     

  162. Hoffmann, M., Cosyns, E. & Lamoot, I. Large herbivores in coastal dune management: do grazers do what they are supposed to do. In Proc. Dunes Estuaries 249–267 (2005).

  163. Huntzinger, M., Karban, R. & Cushman, J. H. Negative effects of vertebrate herbivores on invertebrates in a coastal dune community. Ecology 89, 1972–1980 (2008).

    Article 

    Google Scholar
     

  164. Ramsey, D. S. L. & Wilson, J. C. The impact of grazing by macropods on coastal foredune vegetation in southeast Queensland. Aust. J. Ecol. 22, 288–297 (1997).

    Article 

    Google Scholar
     

  165. Zhang, L. et al. Interactive effects of crab herbivory and spring drought on a Phragmites australis-dominated salt marsh in the Yellow River Delta. Sci. Total Environ. 766, 144254 (2021).

    Article 
    CAS 

    Google Scholar
     

  166. Seliskar, D. M. & Huettel, R. N. Nematode involvement in the dieout of Ammophila breviligulata (Poaceae) on the Mid-Atlantic Coastal Dunes of the United States. J. Coast. Res. 9, 97–103 (1993).


    Google Scholar
     

  167. Gallego-Fernández, J. B., Sánchez, I. A. & Ley, C. Restoration of isolated and small coastal sand dunes on the rocky coast of northern Spain. Ecol. Eng. 37, 1822–1832 (2011).

    Article 

    Google Scholar
     

  168. Schwarz, C., Brinkkemper, J. & Ruessink, G. Feedbacks between biotic and abiotic processes governing the development of foredune blowouts: a review. J. Mar. Sci. Eng. 7, 2 (2018).

    Article 

    Google Scholar
     

  169. Silva, R., Martínez, M. L., Odériz, I., Mendoza, E. & Feagin, R. A. Response of vegetated dune–beach systems to storm conditions. Coast. Eng. 109, 53–62 (2016).

    Article 

    Google Scholar
     

  170. Feagin, R. A. et al. Does vegetation accelerate coastal dune erosion during extreme events? Sci. Adv. 9, eadg7135 (2023).

    Article 

    Google Scholar
     

  171. Walker, S. L. & Zinnert, J. Whole plant traits of coastal dune vegetation and implications for interactions with dune dynamics. Ecosphere 13, 4065 (2022).

    Article 

    Google Scholar
     

  172. Durán Vincent, O., Schaffer, B. E. & Rodriguez-Iturbe, I. Stochastic dynamics of barrier island elevation. Proc. Natl Acad. Sci. USA 118, 2013349118 (2021).

    Article 

    Google Scholar
     

  173. Davenport, J. & Davenport, J. L. The impact of tourism and personal leisure transport on coastal environments: a review. Estuar. Coast. Shelf Sci. 67, 280–292 (2006).

    Article 

    Google Scholar
     

  174. Jackson, N. L. & Nordstrom, K. F. Aeolian sediment transport and landforms in managed coastal systems: a review. Aeolian Res. 3, 181–196 (2011).

    Article 

    Google Scholar
     

  175. De Luca, E. et al. Coastal dune systems and disturbance factors: monitoring and analysis in central Italy. Environ. Monit. Assess. 183, 437–450 (2011).

    Article 
    CAS 

    Google Scholar
     

  176. Burkitt, J. & Wootton, Louise Effects of disturbance and age of invasion on the impact of the invasive sand sedge, Carex kobomugi, on native dune plant populations in New Jersey’s coastal dunes. J. Coast. Res. 27, 182–193 (2011).


    Google Scholar
     

  177. Riffe, E. C. & Zinnert, J. C. Impact of invasive Carex kobomugi on the native dune community in a US mid-Atlantic coastal system. Biol. Invasions 26, 1195–1208 (2024).

    Article 

    Google Scholar
     

  178. de Schipper, M. A., Ludka, B. C., Raubenheimer, B., Luijendijk, A. P. & Schlacher, T. A. Beach nourishment has complex implications for the future of sandy shores. Nat. Rev. Earth Environ. 2, 70–84 (2021).

    Article 

    Google Scholar
     

  179. Smith, M. D., Slott, J. M., McNamara, D. & Brad Murray, A. Beach nourishment as a dynamic capital accumulation problem. J. Environ. Econ. Manag. 58, 58–71 (2009).

    Article 

    Google Scholar
     

  180. Li, B. & Sherman, D. J. Aerodynamics and morphodynamics of sand fences: a review. Aeolian Res. 17, 33–48 (2015).

    Article 
    CAS 

    Google Scholar
     

  181. Nordstrom, K. F. & Arens, S. M. The role of human actions in evolution and management of foredunes in the Netherlands and New Jersey, USA. J. Coast. Conserv. 4, 169–180 (1998).

    Article 

    Google Scholar
     

  182. Speybroeck, J. et al. Beach nourishment: an ecologically sound coastal defence alternative? A review. Aquat. Conserv. Mar. Freshw. Ecosyst. 16, 419–435 (2006).

    Article 

    Google Scholar
     

  183. Hoonhout, B. M. & Vries, Sde A process�based model for aeolian sediment transport and spatiotemporal varying sediment availability. J. Geophys. Res. Earth Surf. 121, 1555–1575 (2016).

    Article 

    Google Scholar
     

  184. Itzkin, M., Moore, L. J., Ruggiero, P. & Hacker, S. D. The effect of sand fencing on the morphology of natural dune systems. Geomorphology https://doi.org/10.1016/j.geomorph.2019.106995 (2020).

  185. Ollerhead, J., Davidson-Arnott, R., Walker, I. J. & Mathew, S. Annual to decadal morphodynamics of the foredune system at Greenwich Dunes, Prince Edward Island, Canada. Earth Surf. Process. Landf. 38, 284–298 (2013).

    Article 

    Google Scholar
     

  186. Lansu, E. M. et al. A global analysis of how human infrastructure squeezes sandy coasts. Nat. Commun. 15, 432 (2024).

    Article 
    CAS 

    Google Scholar
     

  187. Durán Vinent, O. & Moore, L. J. Barrier island bistability induced by biophysical interactions. Nat. Clim. Change 5, 158–162 (2015).

    Article 

    Google Scholar
     

  188. Jackson, D. W. T., Costas, S., González-Villanueva, R. & Cooper, A. A global ‘greening’ of coastal dunes: an integrated consequence of climate change? Glob. Planet. Change 182, 103026 (2019).

    Article 

    Google Scholar
     

  189. Goldstein, E. B. et al. Literature-based latitudinal distribution and possible range shifts of two US east coast dune grass species (Uniola paniculata and Ammophila breviligulata). PeerJ 6, e4932 (2018).

    Article 

    Google Scholar
     

  190. Mendoza�González, G., Martínez, M. L., Rojas�Soto, O. R., Vázquez, G. & Gallego�Fernández, J. B. Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise. Glob. Change Biol. 19, 2524–2535 (2013).

    Article 

    Google Scholar
     

  191. Dixon, P., Hilton, M. & Bannister, P. Desmoschoenus spiralis displacement by Ammophila arenaria: the role of drought. N. Z. J. Ecol. 28, 207–213 (2004).


    Google Scholar
     

  192. Homberger, J., Lynch, A., Riksen, M. & Limpens, J. Growth response of dune�building grasses to precipitation. Ecohydrology 18, e2634 (2024).

    Article 

    Google Scholar
     

  193. Menicagli, V. et al. Beach-cast seagrass wrack: a natural marine resource improving the establishment of dune plant communities under a changing climate. Mar. Pollut. Bull. 201, 116270 (2024).

    Article 
    CAS 

    Google Scholar
     

  194. Provoost, S., Jones, M. L. M. & Edmondson, S. E. Changes in landscape and vegetation of coastal dunes in northwest Europe: a review. J. Coast. Conserv. 15, 207–226 (2011).

    Article 

    Google Scholar
     

  195. Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycles 23, GB0A04 (2009).

    Article 

    Google Scholar
     

  196. Walsh, K. J. E. et al. Tropical cyclones and climate change. WIREs Clim. Change 7, 65–89 (2016).

    Article 

    Google Scholar
     

  197. Emanuel, K. Response of global tropical cyclone activity to increasing CO2: results from downscaling CMIP6 models. https://doi.org/10.1175/JCLI-D-20-0367.1 (2021).

  198. Wolinsky, M. A. & Murray, A. B. A unifying framework for shoreline migration: 2. Application to wave-dominated coasts. J. Geophys. Res. Earth Surf. 114, F01009 (2009).


    Google Scholar
     

  199. Woodruff, J. D., Irish, J. L. & Camargo, S. J. Coastal flooding by tropical cyclones and sea-level rise. Nature 504, 44–52 (2013).

    Article 
    CAS 

    Google Scholar
     

  200. Konlechner, T. M., Kennedy, D. M., Cousens, R. D. & Woods, J. L. D. Patterns of early-colonising species on eroding to prograding coasts; implications for foredune plant communities on retreating coastlines. Geomorphology 327, 404–416 (2019).

    Article 

    Google Scholar
     

  201. Davidson-Arnott, R. G. D. & Bauer, B. O. Controls on the geomorphic response of beach–dune systems to water level rise. J. Gt. Lakes Res. 47, 1594–1612 (2021).

    Article 

    Google Scholar
     

  202. Costas, S., Ferreira, Ó., Plomaritis, T. A. & Leorri, E. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction. Sci. Rep. 6, 38726 (2016).

    Article 
    CAS 

    Google Scholar
     

  203. Magliocca, N. R., McNamara, D. E. & Murray, A. B. Long-term, large-scale morphodynamic effects of artificial dune construction along a barrier island coastline. J. Coast. Res. 27, 918–930 (2011).

    Article 

    Google Scholar
     

  204. Wakes, S. J., Maegli, T., Dickinson, K. J. & Hilton, M. J. Numerical modelling of wind flow over a complex topography. Environ. Model. Softw. 25, 237–247 (2010).

    Article 

    Google Scholar
     

  205. Nguyen, D., Hilton, M. & Wakes, S. Aeolian sand transport thresholds in excavated foredune notches. Earth Surf. Process. Landf. 47, 553–568 (2022).

    Article 

    Google Scholar
     

  206. McGuirk, M. T., Kennedy, D. M. & Konlechner, T. The role of vegetation in incipient dune and foredune development and morphology: a review. J. Coast. Res. 38, 414–428 (2022).

    Article 

    Google Scholar
     

  207. Murray, A. B. Reducing model complexity for explanation and prediction. Geomorphology 90, 178–191 (2007).

    Article 

    Google Scholar
     

  208. Murray, A. B. Contrasting the goals, strategies, and predictions associated with simplified numerical models and detailed simulations. Geophys. Monogr.-Am. Geophys. Union 135, 151–168 (2003).


    Google Scholar
     

  209. Hallin, C., Larson, M. & Hanson, H. Simulating beach and dune evolution at decadal to centennial scale under rising sea levels. PLoS ONE 14, e0215651 (2019).

    Article 
    CAS 

    Google Scholar
     

  210. Dalyander, P. S., Mickey, R. C., Passeri, D. L. & Plant, N. G. Development and application of an empirical dune growth model for evaluating barrier island recovery from storms. J. Mar. Sci. Eng. 8, 977 (2020).

    Article 

    Google Scholar
     

Download references

Acknowledgements

The authors thank the William R. and Lenore Mote Eminent Scholar Chair in Marine Biology endowment at Florida State University, NSF Division of Environmental Biology Long-term Ecological Research Program (award no. 183221), US Army Corp of Engineers (award no. W912HZ2120045), NSF Large Scale Coasts and People Hub (award no. 2103713), Florida DEP (award no. ANR01), Triumph Gulf Coast Inc., Project no. 69: Apalachicola Bay System Initiative and The Dutch Research Council (DuneForce — NWO project number 17064) for financial support. The authors also thank D. Davis for support during an initial workshop on this topic and the reviewers and editors of this manuscript for their helpful feedback.

Author information

Authors and Affiliations

Authors

Contributions

L.J.M., S.D.H., J.B., T.M. and P.R. conceptualized and led the article. All authors contributed to researching, writing and editing the text and to figure preparation.

Corresponding author

Correspondence to
Laura J. Moore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Susana Costas, Julie Billy, Mike Hilton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Aeolian processes

Erosion, transportation and deposition of sand by the wind.

Beach sand supply

The amount of sand transported from the nearshore or alongshore to the beach, usually by wave action.

Community structure

A set of characteristics that shape a community, including the number, composition and abundance of species.

Disturbance

A natural or anthropogenic event that disrupts community structure by physically, chemically or biologically altering organisms or their resources.

Dune sand supply

The amount of sand transported from the beach to the dune via wind or wave action.

Ecomorphodynamics

Interactions and feedbacks between sand transport processes and ecological processes that drive changes in landscape morphology and ecological communities.

Embryo dunes

A small-scale accumulation of sand representing an early stage of dune formation found on overwash plains or in front of foredunes, also referred to as incipient dune or nebkha.

Foredune

The seaward-most, fully formed dune, parallel to the shoreline on a sandy barrier or beach.

Sand capture

The accumulation of sand owing to a combination of wind speed reduction and decreased remobilization, induced by vegetation, wrack and/or topography.

Stress

Physical, chemical or biological constraints that reduce growth, reproduction or survival of organisms through processes such as sand loss, drought, nutrient limitation or disease.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, L.J., Hacker, S.D., Breithaupt, J. et al. Ecomorphodynamics of coastal foredune evolution.
Nat Rev Earth Environ (2025). https://doi.org/10.1038/s43017-025-00672-z

Download citation

  • Accepted: 25 March 2025

  • Published: 22 May 2025

  • DOI: https://doi.org/10.1038/s43017-025-00672-z