Physical and biogeochemical responses of Tibetan Plateau lakes to climate change

March 17, 2025

Abstract

The lakes, rivers and glaciers of the Tibetan Plateau (TP) — a vital water resource for East Asia — are undergoing substantial environmental change. In this Review, we examine trends in the size and the physical and biogeochemical properties of TP lakes. Lake area and volume have consistently increased since 1995, with most rapid expansion in northern lakes. Between 1986 and 2022, the total area of lakes larger than 1 km2 increased from 37,109 km2 to 46,980 km2, and water storage increased by 169.7 km3, driven by warming and enhanced precipitation. In large lakes (≥10 km2), average surface temperatures increased by 1.33 °C, water transparency increased by 1 m, and salinity decreased from 48.76 to 23.76 psu. Responses in lake biogeochemistry include enhanced microbial diversity and trophic status, despite minimal additional nutrient inputs and consistent rates of productivity. Although TP lakes appear to be a net source of CO2 to the atmosphere (1.60, 6.87 and 1.16 Tg C yr−1 in the 2000s, 2010s and the 2020s, respectively), long-term CO2 source-sink dynamics remain uncertain. TP lake area is projected to increase by 9,000 km2 by 2050 under SSP5-8.5 and will continue to influence and enhance regional precipitation. Improved prediction of TP lake hydrology and biogeochemistry will aid sustainable management of water resources across the TP.

Key points

  • Since 1995, Tibetan Plateau lakes have increased in size by 9,871 km2 in area and 169.7 km3 in water storage. Lakes in the northern plateau have expanded at a more rapid rate than those in the southern plateau.

  • Lake surface waters have warmed on average by 1.33 °C owing to rising air temperatures. Lakes in the south have warmed at a rate of 0.44 °C yr−1, exceeding the warming rate of those in the north (0.21 °C yr−1) and resulting in weaker evaporation in the north than in the south (1,056 mm yr−1 versus 1,172 mm yr−1).

  • Lake transparency increased by 1 m and salinity decreased by 25 psu on average, with changes being much more pronounced in the north than in the south.

  • Chlorophyll a concentrations ranged between 0.1 and 16.5 μg l−1 in the TP lakes, with an average concentration of 1.4 μg l−1 across all lakes, and an average rate of decrease of 0.03 μg l−1 yr−1. However, phytoplankton and microbial species diversity and ecosystem complexity increased with decreasing salinity.

  • Measurements of CO2 fluxes across TP lakes are sparse. However, observations indicate that overall TP lakes are a source of CO2 to the atmosphere, with fluxes ranging from 1.16 to 6.87 Tg C yr−1. Lakes with higher salinity are acting as a stronger source of CO2 to the atmosphere than lakes with lower salinity.

  • Lake expansion weakens evaporation by increasing heat capacity, whereas large lakes induce enhanced precipitation by inducing large-scale atmospheric circulation, posing risks to infrastructure, settlements and agricultural land through flooding and inundation, and could potentially impact regional CO2 fluxes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Water source and loss pathways influencing water balance in Tibetan Plateau lakes.
Fig. 2: The distribution of major lakes and their change in size between 1986 and 2022.
Fig. 3: Change in lake physical properties between 1986 and 2022.
Fig. 4: Relationships between lake properties and ecosystem complexity.
Fig. 5: Change in lake CO2 flux rates.
Fig. 6: Future impacts of continued lake expansion on the Tibetan Plateau.

References

  1. Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

    Article 
    CAS 

    Google Scholar
     

  2. Nie, Y. et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2, 91–106 (2021).

    Article 

    Google Scholar
     

  3. Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Article 
    CAS 

    Google Scholar
     

  4. Immerzeel, W. W., Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    Article 
    CAS 

    Google Scholar
     

  5. Yang, Y. et al. Spatial structure and β-diversity of phytoplankton in Tibetan Plateau lakes: nestedness or replacement? Hydrobiologia 808, 301–314 (2017).

    Article 

    Google Scholar
     

  6. Gao, Y. et al. Recognition and challenges of the inland water carbon source and sink processes on the Qinghai-Tibet Plateau. J. Lake Sci. 35, 1853–1865 (2023).

    CAS 

    Google Scholar
     

  7. Yang, K. et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Change 109, 517–553 (2011).

    Article 

    Google Scholar
     

  8. Bibi, S. et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review. Int. J. Climatol. 38, e1–e17 (2018).

    Article 

    Google Scholar
     

  9. Zhang, R. et al. The consecutive lake group water storage variations and their dynamic response to climate change in the central Tibetan Plateau. J. Hydrol. 601, 126615 (2021).

    Article 

    Google Scholar
     

  10. You, Q. L. et al. Elevation dependent warming over the Tibetan Plateau: patterns, mechanisms and perspectives. Earth Sci. Rev. 210, 103349 (2020).

    Article 

    Google Scholar
     

  11. Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    Article 

    Google Scholar
     

  12. Liu, X. D. & Chen, B. D. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 20, 1729–1742 (2000).

    Article 

    Google Scholar
     

  13. Zhang, G. Q. et al. A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull. 64, 1306–1309 (2019).

    Article 

    Google Scholar
     

  14. Kuang, X. X. & Jiao, J. J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 121, 3979–4007 (2016).

    Article 

    Google Scholar
     

  15. Chen, D. L. et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 60, 3025–3035 (2015).


    Google Scholar
     

  16. Duan, A. M. & Xiao, Z. X. Does the climate warming hiatus exist over the Tibetan Plateau? Sci. Rep. 5, 13711 (2015).

    Article 

    Google Scholar
     

  17. Crétaux, J. F. et al. Lake volume monitoring from space. Surv. Geophys. 37, 269–305 (2016).

    Article 

    Google Scholar
     

  18. Li, Y. K. et al. Patterns and potential drivers of dramatic changes in Tibetan Lakes, 1972-2010. PLoS ONE 9, e111890 (2014).

    Article 

    Google Scholar
     

  19. Martin, L. C. P. et al. Recent ground thermo-hydrological changes in a southern Tibetan endorheic catchment and implications for lake level changes. Hydrol. Earth Syst. Sci. 27, 4409–4436 (2023).

    Article 

    Google Scholar
     

  20. Liu, W. H. et al. Rapid expansion of lakes in the endorheic basin on the Qinghai-Tibet Plateau since 2000 and its potential drivers. Catena 197, 104942 (2021).

    Article 

    Google Scholar
     

  21. Yang, K. et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob. Planet. Change 112, 79–91 (2014).

    Article 

    Google Scholar
     

  22. Yao, T. D. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–669 (2012).

    Article 

    Google Scholar
     

  23. Lei, Y. B. et al. An integrated investigation of lake storage and water level changes in the Paiku Co basin, central Himalayas. J. Hydrol. 562, 599–608 (2018).

    Article 

    Google Scholar
     

  24. You, Q. L., Min, J. Z., Zhang, W., Pepin, N. & Kang, S. C. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim. Dyn. 45, 791–806 (2015).

    Article 

    Google Scholar
     

  25. Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).

    Article 
    CAS 

    Google Scholar
     

  26. Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).

    Article 

    Google Scholar
     

  27. Gao, Y. H., Cuo, L. & Zhan, Y. X. Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J. Clim. 27, 1876–1893 (2014).

    Article 

    Google Scholar
     

  28. Cheng, G. D. & Wu, T. H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. 112, F02S03 (2007).


    Google Scholar
     

  29. Rüthrich, F., Reudenbach, C., Thies, B. & Bendix, J. Lake-related cloud dynamics on the Tibetan Plateau: spatial patterns and interannual variability. J. Clim. 28, 9080–9104 (2015).

    Article 

    Google Scholar
     

  30. Du, B. L. et al. A quantification of heat storage change-based evaporation behavior in middle-large-sized lakes in the inland of the Tibetan Plateau and their temporal and spatial variations. Remote Sens. 15, 3460 (2023).

    Article 

    Google Scholar
     

  31. Dai, Y. F. et al. The impact of lake effects on the temporal and spatial distribution of precipitation in the Nam Co basin, Tibetan Plateau. Quatern. Int. 475, 63–69 (2018).

    Article 

    Google Scholar
     

  32. Zhu, L. J., Jin, J. M., Liu, X., Tian, L. & Zhang, Q. H. Simulations of the impact of lakes on local and regional climate over the Tibetan Plateau. Atmos. Ocean. 56, 230–239 (2018).

    Article 

    Google Scholar
     

  33. Yao, T. D. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 3, 618–632 (2022).

    Article 

    Google Scholar
     

  34. Wan, W. et al. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data. Chin. Sci. Bull. 59, 1021–1035 (2014).

    Article 

    Google Scholar
     

  35. Zhang, G. Q., Bolch, T., Chen, W. & Crétaux, J. F. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution. Sci. Total Environ. 772, 145463 (2021).

    Article 
    CAS 

    Google Scholar
     

  36. Qiao, B. J., Zhu, L. P. & Yang, R. M. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens. Environ. 222, 232–243 (2019).

    Article 

    Google Scholar
     

  37. Guo, L. N. et al. An integrated dataset of daily lake surface water temperature over Tibetan Plateau. Earth Syst. Sci. Data 14, 3411–3422 (2022).

    Article 

    Google Scholar
     

  38. Song, C. Q., Huang, B., Ke, L. H. & Richards, K. S. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: a review. ISPRS J. Photogramm. Remote Sens. 92, 26–37 (2014).

    Article 

    Google Scholar
     

  39. Zhang, G. Q. et al. Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms. Earth Sci. Rev. 208, 103269 (2020).

    Article 

    Google Scholar
     

  40. Kalff, J. Limnology: Inland Water Ecosystems (Prentice Hall, 2002).

  41. Lin, Q. Q. et al. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: implication for the effect of climate warming. Water Res. 124, 618–629 (2017).

    Article 
    CAS 

    Google Scholar
     

  42. Liu, C. et al. The decrease of salinity in lakes on the Tibetan Plateau between 2000 and 2019 based on remote sensing model inversions. Int. J. Digit. Earth 16, 2644–2659 (2023).

    Article 

    Google Scholar
     

  43. Cai, Y. et al. Variations of lake ice phenology on the Tibetan Plateau from 2001 to 2017 based on MODIS data. J. Geophys. Res. Atmos. 124, 825–843 (2019).

    Article 

    Google Scholar
     

  44. Huang, L. et al. The warming of large lakes on the Tibetan Plateau: evidence from a lake model simulation of Nam Co, China during 1979-2012. J. Geophys. Res. Atmos. 122, 13095–13107 (2017).

    Article 

    Google Scholar
     

  45. Jia, J. J. et al. Determining whether Qinghai–Tibet Plateau waterbodies have acted like carbon sinks or sources over the past 20 years. Sci. Bull. 67, 2345–2357 (2022).

    Article 

    Google Scholar
     

  46. Liu, C. et al. In-situ water quality investigation of the lakes on the Tibetan Plateau. Sci. Bull. 66, 1727–1730 (2021).

    Article 
    CAS 

    Google Scholar
     

  47. Woolway, R. I. & Merchant, C. J. Amplified surface temperature response of cold, deep lakes to interannual air temperature variability. Sci. Rep. 7, 4130 (2017).

    Article 

    Google Scholar
     

  48. Austin, J. A. & Colman, S. M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophys. Res. Lett. 34, L06604 (2007).

    Article 

    Google Scholar
     

  49. Busker, T. et al. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. 23, 669–690 (2019).

    Article 

    Google Scholar
     

  50. Wang, J. D. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).

    Article 
    CAS 

    Google Scholar
     

  51. Yao, F. F. et al. Satellites reveal widespread decline in global lake water storage. Science 380, 743–749 (2023).

    Article 
    CAS 

    Google Scholar
     

  52. Zhang, G. Q. et al. Lakes’ state and abundance across the Tibetan Plateau. Chin. Sci. Bull. 59, 3010–3021 (2014).

    Article 

    Google Scholar
     

  53. Zhang, G. Q. et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 44, 5550–5560 (2017).

    Article 

    Google Scholar
     

  54. Lei, Y. B. et al. Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution. J. Hydrol. 483, 61–67 (2013).

    Article 

    Google Scholar
     

  55. Song, C., Huang, B. & Ke, L. Inter�annual changes of alpine inland lake water storage on the Tibetan Plateau: detection and analysis by integrating satellite altimetry and optical imagery. Hydrol. Process. 28, 2411–2418 (2014).

    Article 

    Google Scholar
     

  56. Song, C. Q., Ye, Q. H. & Cheng, X. Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Sci. Bull. 60, 1287–1297 (2015).

    Article 

    Google Scholar
     

  57. Zhang, G. Q., Xie, H. J., Kang, S. C., Yi, D. & Ackley, S. F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003−2009). Remote Sens. Environ. 115, 1733–1742 (2011).

    Article 

    Google Scholar
     

  58. Kleinherenbrink, M., Lindenbergh, R. C. & Ditmar, P. G. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J. Hydrol. 521, 119–131 (2015).

    Article 

    Google Scholar
     

  59. Phan, V. H., Lindenbergh, R. & Menenti, M. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. Int. J. Appl. Earth Obs. Geoinf. 17, 12–22 (2012).


    Google Scholar
     

  60. Yao, F. F. et al. Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium. Environ. Res. Lett. 13, 064011 (2018).

    Article 

    Google Scholar
     

  61. Zou, Y. G. et al. Solid water melt dominates the increase of total groundwater storage in the Tibetan Plateau. Geophys. Res. Lett. 49, e2022GL100092 (2022).

    Article 

    Google Scholar
     

  62. Qiao, B. J. et al. Spatial difference of terrestrial water storage change and lake water storage change in the inner Tibetan Plateau. Remote Sens. 13, 1984 (2021).

    Article 

    Google Scholar
     

  63. Yi, S., Wang, Q. Y. & Sun, W. K. Basin mass dynamic changes in China from GRACE based on a multi-basin inversion method. J. Geophys. Res. Solid Earth 121, 3782–3803 (2016).

    Article 

    Google Scholar
     

  64. Yang, R. M. et al. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Clim. Change 140, 621–633 (2017).

    Article 

    Google Scholar
     

  65. Lei, Y. B. et al. Response of inland lake dynamics over the Tibetan Plateau to climate change. Clim. Change 125, 281–290 (2014).

    Article 

    Google Scholar
     

  66. Wang, X. J., Pang, G. J. & Yang, M. X. Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations. Int. J. Climatol. 38, 1116–1131 (2018).

    Article 

    Google Scholar
     

  67. Qiao, B. J. & Zhu, L. P. Difference and cause analysis of water storage changes for glacier-fed and non-glacier-fed lakes on the Tibetan Plateau. Sci. Total Environ. 693, 133399 (2019).

    Article 
    CAS 

    Google Scholar
     

  68. Zhao, L. et al. Synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China. Earth Syst. Sci. Data 13, 4207–4218 (2021).

    Article 

    Google Scholar
     

  69. Zhao, L. et al. Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) Plateau. Permafr. Periglac. Process. 31, 396–405 (2020).

    Article 

    Google Scholar
     

  70. Salhotra, A. M. Effect of salinity and ionic composition on evaporation: analysis of Dead Sea evaporation pans. Water Resour. Res. 21, 1336–1344 (1985).

    Article 
    CAS 

    Google Scholar
     

  71. Wang, H. L. & Zheng, M. P. Preliminary study of the correlation between hydrochemistry and salinity of lakes in the Qinghai -Tibetan Plateau. Acta Geol. Sin. 84, 1517–1522 (2010).


    Google Scholar
     

  72. Yan, L. X. et al. Lake water in the Tibet Plateau: quality change and current status evaluation. Acta Sci. Circumst. 38, 900–910 (2018).

    CAS 

    Google Scholar
     

  73. Zhu, L. P. et al. Climatic and lake environmental changes in the Serling Co region of Tibet over a variety of timescales. Sci. Bull. 64, 422–424 (2019).

    Article 

    Google Scholar
     

  74. Zhu, L. P. Electrical conductivity (salinity) data of lakes over 10km2 on the Qinghai Tibet Plateau from 1982 to 2020. National Tibetan Plateau/Third Pole Environment Data Center https://doi.org/10.11888/Terre.tpdc.301016 (2024).

  75. Mancino, G. et al. Assessing water quality by remote sensing in small lakes: the case study of Monticchio lakes in southern Italy. iForest 2, 154–161 (2009).

    Article 

    Google Scholar
     

  76. Rose, K. C., Winslow, L. A., Read, J. S. & Hansen, G. J. A. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol. Oceanogr. Lett. 1, 44–53 (2016).

    Article 

    Google Scholar
     

  77. Zhu, L. P. Transparency data of lakes over 10km2 on the Qinghai Tibet Plateau (1982-2020). National Tibetan Plateau/Third Pole Environment Data Center https://doi.org/10.11888/Terre.tpdc.301018 (2024).

  78. Song, K. S. et al. Quantification of lake clarity in China using Landsat OLI imagery data. Remote Sens. Environ. 243, 111800 (2020).

    Article 

    Google Scholar
     

  79. Liu, C. et al. The increasing water clarity of Tibetan lakes over last 20 years according to MODIS data. Remote Sens. Environ. 253, 112199 (2021).

    Article 

    Google Scholar
     

  80. Pi, X. H. et al. Water clarity changes in 64 large alpine lakes on the Tibetan Plateau and the potential responses to lake expansion. ISPRS J. Photogramm. 170, 192–204 (2020).

    Article 

    Google Scholar
     

  81. Wan, W. et al. Lake surface water temperature change over the Tibetan Plateau from 2001 to 2015: a sensitive indicator of the warming climate. Geophys. Res. Lett. 45, 11177–11186 (2018).

    Article 

    Google Scholar
     

  82. Weyhenmeyer, G. A. et al. Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes. Glob. Change Biol. 17, 268–275 (2011).

    Article 

    Google Scholar
     

  83. Guo, L. N. et al. Uncertainty and variation of remotely sensed lake ice phenology across the Tibetan Plateau. Remote Sens. 10, 1534 (2018).

    Article 

    Google Scholar
     

  84. Kropá�ek, J. et al. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. Cryosphere 7, 287–301 (2013).

    Article 

    Google Scholar
     

  85. Lazhu et al. A new finding on the prevalence of rapid water warming during lake ice melting on the Tibetan Plateau. Sci. Bull. 66, 2358–2361 (2021).

    Article 
    CAS 

    Google Scholar
     

  86. Zhang, G. Q. et al. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. J. Geophys. Res. Atmos. 19, 8552–8567 (2014).

    Article 

    Google Scholar
     

  87. Wang, J. B. et al. Seasonal stratification of a deep, high-altitude, dimictic lake: Nam Co, Tibetan Plateau. J. Hydrol. 584, 124668 (2020).

    Article 

    Google Scholar
     

  88. Lei, Y. B. et al. Contrasting hydrological and thermal intensities determine seasonal lake-level variations — a case study at Paiku Co on the southern Tibetan Plateau. Hydrol. Earth Syst. Sci. 25, 3163–3177 (2021).

    Article 

    Google Scholar
     

  89. Wang, B. B. et al. Analysis of lake stratification and mixing and its influencing factors over high elevation large and small lakes on the Tibetan Plateau. Water https://doi.org/10.3390/w15112094 (2023).

  90. Wen, L. J. et al. Thermal responses of the largest freshwater lake in the Tibetan Plateau and its nearby saline lake to climate change. Remote Sens. 14, 1774 (2022).

    Article 

    Google Scholar
     

  91. Wang, J. B. et al. Spatial and temporal variations in water temperature in a high-altitude deep dimictic mountain lake (Nam Co), central Tibetan Plateau. J. Gt. Lakes Res. 45, 212–223 (2019).

    Article 

    Google Scholar
     

  92. Shi, Y. et al. Drivers of warming in lake Nam Co on Tibetan Plateau over the past 40 years. J. Geophys. Res. Atmos. 127, e2021JD036320 (2022).

    Article 

    Google Scholar
     

  93. Wu, Y. et al. Thermal response of large seasonally ice-covered lakes over Tibetan Plateau to climate change. J. Geophys. Res. Atmos. 129, e2023JD039935 (2024).

    Article 

    Google Scholar
     

  94. Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12, 271–276 (2019).

    Article 
    CAS 

    Google Scholar
     

  95. Arsenault, J. et al. Biogeochemical distinctiveness of peatland ponds, thermokarst waterbodies, and lakes. Geophys. Res. Lett. 49, e2021GL097492 (2022).

    Article 
    CAS 

    Google Scholar
     

  96. Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).

    Article 

    Google Scholar
     

  97. Tao, S. L. et al. Changes in China’s lakes: climate and human impacts. Natl Sci. Rev. 7, 132–140 (2019).

    Article 

    Google Scholar
     

  98. Zhou, N. et al. Carbon, nitrogen, and phosphorus dynamics in China’s lakes: climatic and geographic influences. Environ. Monit. Assess. 195, 113 (2023).

    Article 

    Google Scholar
     

  99. Wu, Y. et al. Emerging water pollution in the world’s least disturbed lakes on Qinghai-Tibetan Plateau. Environ. Pollut. 272, 116032 (2021).

    Article 
    CAS 

    Google Scholar
     

  100. Ao, H. Y. et al. Water and sediment quality in Qinghai Lake, China: a revisit after half a century. Environ. Monit. Assess. 186, 2121–2133 (2014).

    Article 
    CAS 

    Google Scholar
     

  101. Han, W. et al. Anthropogenic activities altering the ecosystem in Lake Yamzhog Yumco, southern Qinghai-Tibetan Plateau. Sci. Total Environ. 904, 166715 (2023).

    Article 
    CAS 

    Google Scholar
     

  102. Song, K. S. et al. Dissolved carbon in a large variety of lakes across five limnetic regions in China. J. Hydrol. 563, 143–154 (2018).

    Article 
    CAS 

    Google Scholar
     

  103. Jia, J. J. et al. Driving mechanisms of gross primary productivity geographical patterns for Qinghai–Tibet Plateau lake systems. Sci. Total Environ. 791, 148286 (2021).

    Article 
    CAS 

    Google Scholar
     

  104. Wang, Z. G., Li, X. Y., Liu, X., Ding, R. Q. & Miao, C. Y. Understanding the environmental drivers of summer dissolved carbon in lakes on the Qinghai-Tibetan Plateau. Sci. Total Environ. 951, 175720 (2024).

    Article 
    CAS 

    Google Scholar
     

  105. Lin, Q. Q., Han, B. P., Hou, J. Z., Zhu, L. P. in Integrated Scientific Survey Report for Environment changes in the Serling Co area of the Tibetan Plateau (eds Zhu., L. P. & Wang, J. B.) 147–185 (Beijing Science, 2020).

  106. Li, Z. X. et al. Phytoplankton community response to nutrients along lake salinity and altitude gradients on the Qinghai-Tibet Plateau. Ecol. Indic. 128, 107848 (2021).

    Article 
    CAS 

    Google Scholar
     

  107. Yue, L. Y., Kong, W. D., Ji, M. K., Liu, J. B. & Morgan-Kiss, R. M. Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes. Sci. Total Environ. 696, 134001 (2019).

    Article 
    CAS 

    Google Scholar
     

  108. Lindström, E. Investigating influential factors on bacterioplankton community composition: results from a field study of five mesotrophic lakes. Microb. Ecol. 42, 598–605 (2001).

    Article 

    Google Scholar
     

  109. Stefanidou, N., Genitsaris, S., Lopez-Bautista, J., Sommer, U. & Moustaka-Gouni, M. Effects of heat shock and salinity changes on coastal Mediterranean phytoplankton in a mesocosm experiment. Mar. Biol. https://doi.org/10.1007/s00227-018-3415-y (2018).

  110. Wu, Q. L. et al. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl. Environ. Microbiol. 72, 5478–5485 (2006).

    Article 
    CAS 

    Google Scholar
     

  111. Ji, M. K. et al. Salinity reduces bacterial diversity, but increases network complexity in Tibetan Plateau lakes. Fems Microbiol. Ecol. 95, fiz190 (2019).

    Article 
    CAS 

    Google Scholar
     

  112. Zhong, Z. P. et al. Prokaryotic community structure driven by salinity and ionic concentrations in plateau lakes of the Tibetan Plateau. Appl. Environ. Microbiol. 82, 1846–1858 (2016).

    Article 
    CAS 

    Google Scholar
     

  113. Liu, Y. Q. et al. Salinity impact on bacterial community composition in five high-altitude lakes from the Tibetan Plateau, Western China. Geomicrobiol. J. 30, 462–469 (2013).

    Article 
    CAS 

    Google Scholar
     

  114. Pang, S. Y., Zhu, L. P., Liu, C. & Ju, J. T. Causes and impacts of decreasing chlorophyll-a in Tibet Plateau lakes during 1986-2021 based on Landsat image inversion. Remote Sens. 15, 1503 (2023).

    Article 

    Google Scholar
     

  115. Zhu, H., Xiong, X., Liu, B. W. & Liu, G. X. Lakes-scale pattern of eukaryotic phytoplankton diversity and assembly process shaped by electrical conductivity in central Qinghai-Tibet Plateau. Fems Microbiol. Ecol. 100, 1–9 (2024).

    Article 
    CAS 

    Google Scholar
     

  116. Yang, Y. H. & Zhao, R. Y. Precipitation input increases biodiversity of planktonic communities in the Qinghai-Tibet Plateau. Sci. Total Environ. 947, 174666 (2024).

    Article 
    CAS 

    Google Scholar
     

  117. Ren, Z. et al. Biogeography and environmental drivers of zooplankton communities in permafrost-affected lakes on the Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 38, e02191 (2022).


    Google Scholar
     

  118. Yuan, X. C., Zheng, M. P., Zhao, W. & Wang, H. L. Plankton and ecology investigation of some saline lakes in Ali Region, Tibet. Acta Geol. Sin. 81, 1754–1763 (2007).

    CAS 

    Google Scholar
     

  119. Tao, J. et al. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau. Glob. Change Biol. 24, 2093–2104 (2018).

    Article 

    Google Scholar
     

  120. Zhang, T. Z., Li, L. L., Lian, X. M., Cai, Z. Y. & Su, J. P. Reproductive biology of great cormorant (Phalacrocorax carbo sinensis) in the Qinghai-Tibet plateau. Waterbirds 30, 305–309 (2007).

    Article 

    Google Scholar
     

  121. Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283 (2007).

    Article 

    Google Scholar
     

  122. Wen, Z. D. et al. Carbon dioxide emissions from lakes and reservoirs of China: a regional estimate based on the calculated pCO2. Atmos. Environ. 170, 71–81 (2017).

    Article 
    CAS 

    Google Scholar
     

  123. Yan, F. P. et al. Lakes on the Tibetan Plateau as conduits of greenhouse gases to the atmosphere. J. Geophys. Res. Biogeosci. 123, 2091–2103 (2018).

    Article 
    CAS 

    Google Scholar
     

  124. Xun, F. et al. Effect of salinity in alpine lakes on the southern Tibetan Plateau on greenhouse gas diffusive fluxes. J. Geophys. Res. Biogeosci. 127, e2022JG006984 (2022).

    Article 
    CAS 

    Google Scholar
     

  125. Guo, Y. H., Zhang, Y. S., Ma, N., Wang, T. & Yang, D. Q. Significant CO2 sink over the Tibet’s largest lake: implication for carbon neutrality across the Tibetan Plateau. Sci. Total Environ. 843, 156792 (2022).

    Article 
    CAS 

    Google Scholar
     

  126. Li, X. Y., Shi, F. Z., Ma, Y. J., Zhao, S. J. & Weil, J. Q. Significant winter CO2 uptake by saline lakes on the Qinghai-Tibet Plateau. Glob. Change Biol. 28, 2041–2052 (2022).

    Article 

    Google Scholar
     

  127. Ran, L. S. et al. Substantial decrease in CO2 emissions from Chinese inland waters due to global change. Nat. Commun. 12, 1730 (2021).

    Article 
    CAS 

    Google Scholar
     

  128. Robbins L., Hansen M., Kleypas J. & Meylan S. CO2calc: a user-friendly seawater carbon calculator for Windows, Mac OS X, and iOS (iPhone). USGS https://pubs.usgs.gov/of/2010/1280/ (2010).

  129. Schrier-Uijl, A. et al. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry 102, 265–279 (2011).

    Article 
    CAS 

    Google Scholar
     

  130. Kai, J. L. et al. High thermodynamical sensitivity of CO2 emissions from a large oligotrophic-hardwater lake (Nam Co) on the Tibetan Plateau. Sci. Total Environ. 947, 174682 (2024).

    Article 
    CAS 

    Google Scholar
     

  131. Song, K. S. et al. Spatiotemporal variations of lake surface temperature across the Tibetan Plateau using MODIS LST product. Remote Sens. 8, 854 (2016).

    Article 

    Google Scholar
     

  132. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

    Article 

    Google Scholar
     

  133. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    Article 
    CAS 

    Google Scholar
     

  134. Kang, S. C. et al. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 5, 015101 (2010).

    Article 

    Google Scholar
     

  135. Briley, L. J., Rood, R. B. & Notaro, M. Large lakes in climate models: a great lakes case study on the usability of CMIP5. J. Gt. Lakes Res. 47, 405–418 (2021).

    Article 

    Google Scholar
     

  136. Huziy, O., Teufel, B., Sushama, L. & Yerubandi, R. Heavy lake-effect snowfall changes and mechanisms for the Laurentian Great Lakes region. Atmosphere 12, 1577 (2021).

    Article 
    CAS 

    Google Scholar
     

  137. Long, Z., Perrie, W., Gyakum, J., Caya, D. & Laprise, R. Northern lake impacts on local seasonal climate. J. Hydrometeorol. 8, 881–896 (2007).

    Article 

    Google Scholar
     

  138. Zhu, L. J., Jin, J. M. & Liu, Y. M. Modeling the effects of lakes in the Tibetan Plateau on diurnal variations of regional climate and their seasonality. J. Hydrometeorol. 21, 2523–2536 (2020).

    Article 

    Google Scholar
     

  139. Yang, X. Y. et al. Numerical simulation of typical characteristics of land surface water-heat exchange over Gyaring Lake and Ngoring Lake in summer. Plateau Meteorol. 41, 143–152 (2022).


    Google Scholar
     

  140. Friedrich, K. et al. Reservoir evaporation in the Western United States: current science, challenges, and future needs. B. Am. Meteorol. Soc. 99, 167–187 (2018).

    Article 

    Google Scholar
     

  141. Nordbo, A. et al. Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J. Geophys. Res. Atmos. 116, D02119 (2011).

    Article 

    Google Scholar
     

  142. Wang, B. B., Ma, Y. M., Wang, Y. Z., Su, Z. & Ma, W. Q. Significant differences exist in lake-atmosphere interactions and the evaporation rates of high-elevation small and large lakes. J. Hydrol. 573, 220–234 (2019).

    Article 

    Google Scholar
     

  143. Wang, B. B. et al. Quantifying the evaporation amounts of 75 high elevation large dimictic lakes on the Tibetan Plateau. Sci. Adv. 6, eaay8558 (2020).

    Article 

    Google Scholar
     

  144. Zhan, S. A., Song, C. Q., Wang, J. D., Sheng, Y. W. & Quan, J. P. A global assessment of terrestrial evapotranspiration increase due to surface water area change. Earths Future 7, 266–282 (2019).

    Article 

    Google Scholar
     

  145. Wang, W. et al. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. https://doi.org/10.1038/s41561-018-0114-8 (2018).

    Article 

    Google Scholar
     

  146. Wang, M. X. & Wen, L. J. Study on water level evolution of Qinghai Lake and its influencing factors. Plateau Meteorol. 43, 561–569 (2024).


    Google Scholar
     

  147. Tang, S. C. et al. Regional and tele-connected impacts of the Tibetan Plateau surface darkening. Nat. Commun. 14, 32 (2023).

    Article 
    CAS 

    Google Scholar
     

  148. Li, X. Y. et al. Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 121, 10470–10485 (2016).

    Article 

    Google Scholar
     

  149. Kirillin, G., Wen, L. J. & Shatwell, T. Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands. Hydrol. Earth Syst. Sci. 21, 1895–1909 (2017).

    Article 

    Google Scholar
     

  150. Guo, Y. H. et al. Long-term changes in evaporation over Siling Co Lake on the Tibetan and its impact on recent rapid lake expansion. Atmos. Res. 216, 141–150 (2019).

    Article 

    Google Scholar
     

  151. Guo, Y. H. et al. Quantifying surface energy fluxes and evaporation over a significant expanding endorheic lake in the central Tibetan Plateau. J. Meteorol. Soc. Jpn 94, 453–465 (2016).

    Article 

    Google Scholar
     

  152. Zhou, J. et al. Spatiotemporal variations of actual evapotranspiration over the Lake Selin Co and surrounding small lakes (Tibetan Plateau) during 2003-2012. Sci. China Earth Sci. 59, 2441–2453 (2016).

    Article 
    CAS 

    Google Scholar
     

  153. Lazhu et al. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. J. Geophys. Res. Atmos. 121, 7578–7591 (2016).

    Article 

    Google Scholar
     

  154. Guo, L. N. et al. Modelling heat balance of a large lake in central Tibetan Plateau incorporating satellite observations. Remote Sens. 15, 3982 (2023).

    Article 
    CAS 

    Google Scholar
     

  155. Lü, Y. Q. et al. Numerical simulation of typical atmospheric boundary layer characteristics over Lake Nam Co region, Tibetan Plateau in summer. Plateau Meteorol. 27, 733–740 (2008).


    Google Scholar
     

  156. Haginoya, S. et al. Air-lake interaction features found in heat and water exchanges over Nam Co on the Tibetan Plateau. SOLA 5, 172–175 (2009).

    Article 

    Google Scholar
     

  157. Xiao, W. et al. Transfer coefficients of momentum, heat and water vapor in the atmospheric surface layer of a large freshwater lake. Bound. Layer Meteorol. 148, 479–494 (2013).

    Article 

    Google Scholar
     

  158. Wen, L. J., Lyu, S. H., Kirillin, G., Li, Z. G. & Zhao, L. Air-lake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands. Tellus A 68, 31091 (2016).

    Article 

    Google Scholar
     

  159. Zhao, Z. Z. et al. Effects of Lake Nam Co and surrounding terrain on extreme precipitation over Nam Co basin, Tibetan Plateau: a case study. J. Geophys. Res. Atmos. 127, e2021JD036190 (2022).

    Article 

    Google Scholar
     

  160. Dai, Y. F. et al. Observed and simulated lake effect precipitation over the Tibetan Plateau: an initial study at Nam Co Lake. J. Geophys. Res. Atmos. 123, 6746–6759 (2018).

    Article 

    Google Scholar
     

  161. Dai, Y. F., Yao, T. D., Wang, L., Li, X. & Zhang, X. Contrasting roles of a large alpine lake on Tibetan Plateau in shaping regional precipitation during summer and autumn. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00358 (2020).

  162. Su, D. et al. Effects of the largest lake of the Tibetan Plateau on the regional climate. J. Geophys. Res. Atmos. 125, e2020JD033396 (2020).

    Article 

    Google Scholar
     

  163. Wen, L. J., Lv, S. H., Li, Z. G., Zhao, L. & Nagabhatla, N. Impacts of the two biggest lakes on local temperature and precipitation in the Yellow River source region of the Tibetan Plateau. Adv. Meteorol. 2015, 248031 (2015).

    Article 

    Google Scholar
     

  164. Yao, X. N. et al. Surface friction contrast between water body and land enhances precipitation downwind of a large lake in Tibet. Clim. Dyn. 56, 2113–2126 (2021).

    Article 

    Google Scholar
     

  165. Wu, Y. et al. Numerical study on the climatic effect of the lake clusters over Tibetan Plateau in summer. Clim. Dyn. 53, 5215–5236 (2019).

    Article 

    Google Scholar
     

  166. Yang, K. et al. Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau. Clim. Change 147, 149–163 (2018).

    Article 

    Google Scholar
     

  167. Budyko, M. I. The heat balance of the Earth’s surface. Soviet Geography 2, 3–13 (1961).


    Google Scholar
     

  168. Liu, Y. & Chen, H. P. Future warming accelerates lake variations in the Tibetan Plateau. Int. J. Climatol. 42, 8687–8700 (2022).

    Article 

    Google Scholar
     

  169. Bolch, T. et al. in The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People (eds Wester, P. et al.) 209–255 (Springer, 2019).

  170. Giesen, R. H. & Oerlemans, J. Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Clim. Dyn. 41, 3283–3300 (2013).

    Article 

    Google Scholar
     

  171. Marzeion, B. et al. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6, 1295–1322 (2012).

    Article 

    Google Scholar
     

  172. Radić, V. et al. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn. 42, 37–58 (2014).

    Article 

    Google Scholar
     

  173. Xu, F. L. et al. Widespread societal and ecological impacts from projected Tibetan Plateau lake expansion. Nat. Geosci. https://doi.org/10.1038/s41561-024-01446-w (2024).

  174. Allen, S. K., Zhang, G. Q., Wang, W. C., Yao, T. D. & Bolch, T. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Sci. Bull. 64, 435–445 (2019).

    Article 

    Google Scholar
     

  175. Wang, X. et al. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 12, 2169–2182 (2020).

    Article 

    Google Scholar
     

  176. Zhang, G. Q., Yao, T. D., Xie, H. J., Wang, W. C. & Yang, W. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Glob. Planet. Change 131, 148–157 (2015).

    Article 

    Google Scholar
     

  177. Ge, S. X. & Zong, G. Preliminary investigation and reflection on lake water level rise of some lakes in western Naqu area. Xizang Sci. Technol. 4, 14–23 (2005).


    Google Scholar
     

  178. Cheng, J. et al. Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site. Sci. Total Environ. 802, 149928 (2022).

    Article 
    CAS 

    Google Scholar
     

  179. Lu, S. L. et al. Drainage basin reorganization and endorheic-exorheic transition triggered by climate change and human intervention. Glob. Planet. Change 201, 103494 (2021).

    Article 

    Google Scholar
     

  180. Wang, L. et al. Domino effect of a natural cascade alpine lake system on the Third Pole. PNAS Nexus 1, 1–9 (2022).

    Article 

    Google Scholar
     

  181. Lei, Y. B. et al. Overflow of Siling Co on the central Tibetan Plateau and its environmental impacts. Sci. Bull. 69, 2829–2832 (2024).

    Article 

    Google Scholar
     

  182. Zhang, Y. H., Yang, G. S. & Wan, R. R. Ecosystem health assessment indictors for lakes. Resour. Sci. 36, 1306–1315 (2014).


    Google Scholar
     

  183. Li, C. D. et al. Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment. Environ. Sci. Pollut. Res. 22, 12490–12500 (2015).

    Article 
    CAS 

    Google Scholar
     

  184. Jiang, N. et al. Distribution of microplastics in benthic sediments of Qinghai Lake on the Tibetan Plateau, China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2022.155434 (2022).

  185. Li, C. L. et al. Impacts of human and herbivorous feces on lake surface sediments of the Tibetan Plateau based on fecal stanol proxies. Ecol. Indic. 158, 111487 (2024).

    Article 

    Google Scholar
     

Download references

Acknowledgements

The authors thank the projects for Second Tibetan Plateau Scientific Expedition and Research (STEP) (2019QZKK0202), Tibet Autonomous Region key R & D project, and CAS Alliance of Field Observation Stations (KFJ-SW-YW038).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. designed the Review and wrote the draft of the manuscript. J.J. and B.Q. revised the text and figures. B.Q. and R.Y. made water storage analyses; C.L., J.J., L.G. and J.W. made lake water physico-chemical parameter analyses. All authors made substantial contributions to discussions of its content.

Corresponding authors

Correspondence to
Liping Zhu, Jianting Ju or Baojin Qiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Junqiang Yao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Ju, J., Qiao, B. et al. Physical and biogeochemical responses of Tibetan Plateau lakes to climate change.
Nat Rev Earth Environ (2025). https://doi.org/10.1038/s43017-025-00650-5

Download citation

  • Accepted: 07 February 2025

  • Published: 18 March 2025

  • DOI: https://doi.org/10.1038/s43017-025-00650-5

 

Search

RECENT PRESS RELEASES