The environmental exposome in heart failure risk and progression

January 25, 2026

Abstract

Environmental exposures have a crucial role in the incidence and progression of heart failure (HF) by exacerbating genetic predisposition and other pathophysiological mechanisms. The exposome — encompassing pollution, climate and the urban environment — and the biological responses to these factors shape cardiovascular health in complex ways. Air, noise and light pollution, exposure to toxic metals, and extremes of temperature adversely affect HF outcomes. Social determinants of health, including socioeconomic status, amplify these environmental risks, disproportionately affecting vulnerable populations. Conversely, green spaces and walkable neighbourhoods are linked to a reduced risk of HF, improved vascular health and medication adherence. Emerging evidence suggests that environmental stressors influence HF outcomes from early life by altering gene expression through epigenetic mechanisms. Despite these insights, research gaps remain. Future studies must integrate environmental, genetic and multiomics data to refine risk prediction and guide targeted public health interventions. A comprehensive understanding of the exposome in the aetiology of HF is essential for developing prevention strategies that address both biological and social determinants of cardiovascular health.

Key points

  • The environmental exposome encompasses the cumulative effects of external and internal factors influencing the risk and progression of heart failure (HF).

  • Air pollution, particularly particulate matter with an aerodynamic diameter <2.5 µm, significantly elevates the risk of HF through inflammatory and oxidative pathways.

  • Chronic noise exposure disrupts autonomic balance, increasing the risk of HF and adverse cardiovascular events.

  • Toxic metals, such as cadmium and lead, exacerbate oxidative stress, contributing to myocardial damage and the progression of HF.

  • Climate conditions, artificial light and socioeconomic disparities further compound the risk of HF, necessitating comprehensive public health interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiological mechanisms of heart failure.
Fig. 2: The association between exposure to air pollution and HF.
Fig. 3: The association between exposure to environmental noise and HF.
Fig. 4: The association between artificial light at night, circadian disruption and incident heart failure.
Fig. 5: The association between exposure to toxic metals and heart failure.
Fig. 6: The association between ambient temperature and heart failure.
Fig. 7: Conceptual framework linking the exposome with heart failure.

References

  1. Ran, J. et al. Global, regional, and national burden of heart failure and its underlying causes, 1990–2021: results from the global burden of disease study 2021. Biomark. Res. 13, 16 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  2. Al-Kindi, S. G., Brook, R. D., Biswal, S. & Rajagopalan, S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat. Rev. Cardiol. 17, 656–672 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  3. Chatterjee, N., Gim, J. & Choi, J. Epigenetic profiling to environmental stressors in model and non-model organisms: ecotoxicology perspective. Environ. Health Toxicol. 33, e2018015 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  4. Hala, D., Huggett, D. & Burggren, W. Environmental stressors and the epigenome. Drug Discov. Today Technol. 12, e3–e8 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  5. Perera, F. & Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 31, 363–373 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  6. Wild, C. P. Complementing the genome with an “exposome�: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 14, 1847–1850 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  7. Daiber, A. et al. The “exposome� concept — how environmental risk factors influence cardiovascular health. Acta Biochim. Pol. 66, 269–283 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  8. Münzel, T., Sørensen, M., Hahad, O., Nieuwenhuijsen, M. & Daiber, A. The contribution of the exposome to the burden of cardiovascular disease. Nat. Rev. Cardiol. 20, 651–669 (2023).

    Article 
    PubMed 

    Google Scholar
     

  9. Khraishah, H., Chen, Z. & Rajagopalan, S. Understanding the cardiovascular and metabolic health effects of air pollution in the context of cumulative exposomic impacts. Circ. Res. 134, 1083–1097 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  10. Rajagopalan, S., Al-Kindi, S. G. & Brook, R. D. Air pollution and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2054–2070 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  11. Khraishah, H. et al. Climate change and cardiovascular disease: implications for global health. Nat. Rev. Cardiol. 19, 798–812 (2022).

    Article 
    PubMed 

    Google Scholar
     

  12. Münzel, T. et al. Environmental noise and the cardiovascular system. J. Am. Coll. Cardiol. 71, 688–697 (2018).

    Article 
    PubMed 

    Google Scholar
     

  13. Zielinska-Dabkowska, K. M., Schernhammer, E. S., Hanifin, J. P. & Brainard, G. C. Reducing nighttime light exposure in the urban environment to benefit human health and society. Science 380, 1130–1135 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  14. Martinez-Morata, I. et al. Associations between urinary metal levels and incident heart failure: a multi-cohort analysis. JACC Heart Fail. 13, 102510 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  15. Lamas, G. A. et al. Contaminant metals as cardiovascular risk factors: a scientific statement from the American Heart Association. J. Am. Heart Assoc. 12, e029852 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  16. Hahad, O., Al-Kindi, S., Lelieveld, J., Münzel, T. & Daiber, A. Supporting and implementing the beneficial parts of the exposome: the environment can be the problem, but it can also be the solution. Int. J. Hyg. Environ. Health 255, 114290 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  17. Zhang, K., Brook, R. D., Li, Y., Rajagopalan, S. & Kim, J. B. Air pollution, built environment, and early cardiovascular disease. Circ. Res. 132, 1707–1724 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  18. Rajagopalan, S. et al. The urban environment and cardiometabolic health. Circulation 149, 1298–1314 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  19. Ji, L.-D., Tang, N. L. S., Xu, Z. F. & Xu, J. Genes regulate blood pressure, but “environments� cause hypertension. Front. Genet. 11, 580443 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  20. Øvretveit, K. et al. Polygenic interactions with environmental exposures in blood pressure regulation: the HUNT study. J. Am. Heart Assoc. 13, e034612 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  21. Keaton, J. M. et al. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nat. Genet. 56, 778–791 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  22. Pazoki, R. et al. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation 137, 653–661 (2018).

    Article 
    PubMed 

    Google Scholar
     

  23. Wu, H., Eckhardt, C. M. & Baccarelli, A. A. Molecular mechanisms of environmental exposures and human disease. Nat. Rev. Genet. 24, 332–344 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  24. Baccarelli, A., Dolinoy, D. C. & Walker, C. L. A precision environmental health approach to prevention of human disease. Nat. Commun. 14, 2449 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  25. Tanwar, V. et al. PM2.5 exposure in utero contributes to neonatal cardiac dysfunction in mice. Environ. Pollut. 230, 116–124 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  26. Tanwar, V. et al. In utero particulate matter exposure produces heart failure, electrical remodeling, and epigenetic changes at adulthood. J. Am. Heart Assoc. 6, e005796 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  27. Ho, F. K. et al. A proteomics-based approach for prediction of different cardiovascular diseases and dementia. Circulation 151, 277–287 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  28. Government of Canada. Human Health Risk Assessment for Ambient Nitrogen Dioxide https://www.canada.ca/en/health-canada/services/publications/healthy-living/human-health-risk-assessment-ambient-nitrogen-dioxide.html (2016).

  29. Public Health England. Associations of Long-term Average Concentrations of Nitrogen Dioxide with Mortality (2018): COMEAP Summary https://www.gov.uk/government/publications/nitrogen-dioxide-effects-on-mortality/associations-of-long-term-average-concentrations-of-nitrogen-dioxide-with-mortality-2018-comeap-summary (2018).

  30. United States Environmental Protection Agency. Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria (Final Report, Jan 2016) https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=310879 (2016).

  31. Thurston, G. D. et al. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Env. Health Perspect. 124, 785–794 (2016).

    Article 
    CAS 

    Google Scholar
     

  32. Eminson, K. et al. Does air pollution confound associations between environmental noise and cardiovascular outcomes? — A systematic review. Env. Res. 232, 116075 (2023).

    Article 
    CAS 

    Google Scholar
     

  33. Rajagopalan, S. & Landrigan, P. J. Pollution and the heart. N. Engl. J. Med. 385, 1881–1892 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  34. Abohashem, S. et al. A leucopoietic-arterial axis underlying the link between ambient air pollution and cardiovascular disease in humans. Eur. Heart J. 42, 761–772 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  35. Kuntic, M. et al. Differential inflammation, oxidative stress and cardiovascular damage markers of nano- and micro-particle exposure in mice: implications for human disease burden. Redox Biol. 83, 103644 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  36. Wold, L. E. et al. Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ. Heart Fail. 5, 452–461 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  37. Liu, Q. et al. Potential molecular mechanism of cardiac hypertrophy in mice induced by exposure to ambient PM2. 5. Ecotoxicol. Environ. Saf. 224, 112659 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  38. Wu, T. et al. PM2.5-induced programmed myocardial cell death via mPTP opening results in deteriorated cardiac function in HFpEF mice. Cardiovasc. Toxicol. 22, 746–762 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  39. Mills, N. L. et al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N. Engl. J. Med. 357, 1075–1082 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  40. Langrish, J. P. et al. Altered nitric oxide bioavailability contributes to diesel exhaust inhalation-induced cardiovascular dysfunction in man. J. Am. Heart Assoc. 2, e004309 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  41. Lucking, A. J. et al. Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation 123, 1721–1728 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  42. Shah, A. S. et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382, 1039–1048 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  43. Jia, Y. et al. Effect of air pollution on heart failure: systematic review and meta-analysis. Env. Health Perspect. 131, 76001 (2023).

    Article 
    CAS 

    Google Scholar
     

  44. Wang, M. et al. Joint exposure to various ambient air pollutants and incident heart failure: a prospective analysis in UK Biobank. Eur. Heart J. 42, 1582–1591 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  45. Bai, L. et al. Exposure to ambient air pollution and the incidence of congestive heart failure and acute myocardial infarction: a population-based study of 5.1 million Canadian adults living in Ontario. Env. Int. 132, 105004 (2019).

    Article 
    CAS 

    Google Scholar
     

  46. Ward-Caviness, C. K. et al. Long-term exposure to particulate air pollution is associated with 30-day readmissions and hospital visits among patients with heart failure. J. Am. Heart Assoc. 10, e019430 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  47. Mentias, A. et al. Ambient air pollution exposure and adverse outcomes among medicare beneficiaries with heart failure. J. Am. Heart Assoc. 13, e032902 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  48. Al-Kindi, S. G. et al. Ambient air pollution and mortality after cardiac transplantation. J. Am. Coll. Cardiology 74, 3026–3035 (2019).

    Article 
    CAS 

    Google Scholar
     

  49. Vieira, J. L. et al. Respiratory filter reduces the cardiovascular effects associated with diesel exhaust exposure: a randomized, prospective, double-blind, controlled study of heart failure: the FILTER-HF trial. JACC Heart Fail. 4, 55–64 (2016).

    Article 
    PubMed 

    Google Scholar
     

  50. Vieira, J. L., Guimaraes, G. V., de Andre, P. A., Saldiva, P. H. & Bocchi, E. A. Effects of reducing exposure to air pollution on submaximal cardiopulmonary test in patients with heart failure: analysis of the randomized, double-blind and controlled FILTER-HF trial. Int. J. Cardiol. 215, 92–97 (2016).

    Article 
    PubMed 

    Google Scholar
     

  51. Rajagopalan, S. et al. Toward heart-healthy and sustainable cities: a policy statement from the American Heart Association. Circulation 149, e1067–e1089 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  52. Hahad, O. et al. Noise and air pollution as risk factors for hypertension: part. I-epidemiology. Hypertension 80, 1375–1383 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  53. Hahad, O. et al. Noise and air pollution as risk factors for hypertension: part. II-pathophysiologic insight. Hypertension 80, 1384–1392 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  54. Münzel, T., Sørensen, M. & Daiber, A. Transportation noise pollution and cardiovascular disease. Nat. Rev. Cardiol 18, 619–636 (2021).

    Article 
    PubMed 

    Google Scholar
     

  55. Hahad, O. et al. Cerebral consequences of environmental noise exposure. Environ. Int. 165, 107306 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  56. Fu, X. et al. Long-term exposure to traffic noise and risk of incident cardiovascular diseases: a systematic review and dose-response meta-analysis. J. Urban Health 100, 788–801 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  57. Heritier, H. et al. Transportation noise exposure and cardiovascular mortality: a nationwide cohort study from Switzerland. Eur. J. Epidemiol. 32, 307–315 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  58. Vienneau, D. et al. Transportation noise exposure and cardiovascular mortality: 15-years of follow-up in a nationwide prospective cohort in Switzerland. Env. Int. 158, 106974 (2022).

    Article 

    Google Scholar
     

  59. Thacher, J. D. et al. Exposure to transportation noise and risk for cardiovascular disease in a nationwide cohort study from Denmark. Env. Res. 211, 113106 (2022).

    Article 
    CAS 

    Google Scholar
     

  60. Yang, T. et al. Long-term exposure to road traffic noise and incident heart failure: evidence from UK Biobank. JACC Heart Fail. 11, 986–996 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  61. Seidler, A. et al. Aircraft, road and railway traffic noise as risk factors for heart failure and hypertensive heart disease — a case-control study based on secondary data. Int. J. Hyg. Env. Health 219, 749–758 (2016).

    Article 

    Google Scholar
     

  62. Bai, L. et al. Exposure to road traffic noise and incidence of acute myocardial infarction and congestive heart failure: a population-based cohort study in Toronto, Canada. Env. Health Perspect. 128, 87001 (2020).

    Article 
    CAS 

    Google Scholar
     

  63. Topriceanu, C. C. et al. Higher aircraft noise exposure is linked to worse heart structure and function by cardiovascular MRI. J. Am. Coll. Cardiol. 85, 454–469 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  64. Davies, H. W., Vlaanderen, J. J., Henderson, S. B. & Brauer, M. Correlation between co-exposures to noise and air pollution from traffic sources. Occup. Env. Med. 66, 347–350 (2009).

    Article 
    CAS 

    Google Scholar
     

  65. Gale, J. E. et al. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J. Biol. Rhythm. 26, 423–433 (2011).

    Article 

    Google Scholar
     

  66. Kurose, T., Yabe, D. & Inagaki, N. Circadian rhythms and diabetes. J. Diabetes Investig. 2, 176–177 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  67. Qian, J., Yeh, B., Rakshit, K., Colwell, C. S. & Matveyenko, A. V. Circadian disruption and diet-induced obesity synergize to promote development of beta-cell failure and diabetes in male rats. Endocrinology 156, 4426–4436 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  68. Gamble, K. L., Berry, R., Frank, S. J. & Young, M. E. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 10, 466–475 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  69. Stenvers, D. J., Scheer, F., Schrauwen, P., la Fleur, S. E. & Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 15, 75–89 (2019).

    Article 
    PubMed 

    Google Scholar
     

  70. Cribbet, M. R. et al. Circadian rhythms and metabolism: from the brain to the gut and back again. Ann. N. Y. Acad. Sci. 1385, 21–40 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  71. Masri, S. & Sassone-Corsi, P. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat. Rev. Neurosci. 14, 69–75 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  72. Masri, S., Zocchi, L., Katada, S., Mora, E. & Sassone-Corsi, P. The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control. Ann. N. Y. Acad. Sci. 1264, 103–109 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  73. Patel, V. R., Eckel-Mahan, K., Sassone-Corsi, P. & Baldi, P. CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics. Nat. Methods 9, 772–773 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  74. Zubidat, A. E. & Haim, A. Artificial light-at-night — a novel lifestyle risk factor for metabolic disorder and cancer morbidity. J. Basic Clin. Physiol. Pharmacol. 28, 295–313 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  75. Palanivel, R. et al. Exposure to air pollution disrupts circadian rhythm through alterations in chromatin dynamics. iScience 23, 101728 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  76. Xu, C. et al. Shift work, genetic factors, and the risk of heart failure: a prospective study of the UK biobank. Mayo Clin. Proc. 97, 1134–1144 (2022).

    Article 
    PubMed 

    Google Scholar
     

  77. Li, X., He, Y., Wang, D. & Momeni, M. R. Chronobiological disruptions: unravelling the interplay of shift work, circadian rhythms, and vascular health in the context of stroke risk. Clin. Exp. Med. 25, 6 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  78. Lane, K. J. et al. Associations between greenness, impervious surface area, and nighttime lights on biomarkers of vascular aging in Chennai, India. Env. Health Perspect. 125, 087003 (2017).

    Article 

    Google Scholar
     

  79. Zhang, J. et al. Role of nighttime light in the association between air pollution exposure and cardiovascular disease. J. Am. Heart Assoc. 14, e042835 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  80. Liang, X. et al. Outdoor light at night and mortality in the UK Biobank: a prospective cohort study. Occup. Env. Med. https://doi.org/10.1136/oemed-2023-109036 (2023).

    Article 

    Google Scholar
     

  81. Martinez-Morata, I. et al. Association of urinary metals with cardiovascular disease incidence and all-cause mortality in the multi-ethnic study of atherosclerosis (MESA). Circulation 150, 758–769 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  82. McGraw, K. E. et al. Urinary metal levels and coronary artery calcification: longitudinal evidence in the multi-ethnic study of atherosclerosis. J. Am. Coll. Cardiol. 84, 1545–1557 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  83. Paithankar, J. G., Saini, S., Dwivedi, S., Sharma, A. & Chowdhuri, D. K. Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262, 128350 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  84. Borne, Y. et al. Cadmium exposure and incidence of heart failure and atrial fibrillation: a population-based prospective cohort study. BMJ Open 5, e007366 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  85. Peters, J. L., Perlstein, T. S., Perry, M. J., McNeely, E. & Weuve, J. Cadmium exposure in association with history of stroke and heart failure. Env. Res. 110, 199–206 (2010).

    Article 
    CAS 

    Google Scholar
     

  86. Vaziri, N. D. Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiology 295, H454–H465 (2008).

    Article 
    CAS 

    Google Scholar
     

  87. Navas-Acien, A., Guallar, E., Silbergeld, E. K. & Rothenberg, S. J. Lead exposure and cardiovascular disease — a systematic review. Env. Health Perspect. 115, 472–482 (2007).

    Article 
    CAS 

    Google Scholar
     

  88. Yang, W. Y. et al. Left ventricular structure and function in relation to environmental exposure to lead and cadmium. J. Am. Heart Assoc. 6, e004692 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  89. Bello, K. A. et al. Chronic exposure to mercury increases arrhythmia and mortality post-acute myocardial infarction in rats. Front. Physiol. 14, 1260509 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  90. Xing, X. et al. Association of selenium and cadmium with heart failure and mortality based on the National Health and Nutrition Examination Survey. J. Hum. Nutr. Diet. 36, 1496–1506 (2023).

    Article 
    PubMed 

    Google Scholar
     

  91. Sears, C. G. et al. Urinary cadmium and incident heart failure: a case-cohort analysis among never-smokers in Denmark. Epidemiology 33, 185–192 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  92. Lieberman-Cribbin, W. et al. Relationship between urinary uranium and cardiac geometry and left ventricular function: the Strong Heart study. JACC Adv. 3, 101408 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  93. Pichler, G. et al. Association of arsenic exposure with cardiac geometry and left ventricular function in young adults. Circ. Cardiovasc. Imaging 12, e009018 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  94. George, C. M. et al. Effect of an arsenic mitigation program on arsenic exposure in American Indian communities: a cluster randomized controlled trial of the community-led Strong Heart Water Study program. Env. Health Perspect. 132, 37007 (2024).

    Article 
    CAS 

    Google Scholar
     

  95. Lamas, G. A. et al. Edetate disodium-based chelation for patients with a previous myocardial infarction and diabetes: TACT2 randomized clinical trial. JAMA 332, 794–803 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  96. Ravalli, F. et al. Chelation therapy in patients with cardiovascular disease: a systematic review. J. Am. Heart Assoc. 11, e024648 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  97. Chowdhury, R. et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 362, k3310 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  98. Alahmad, B. et al. Associations between extreme temperatures and cardiovascular cause-specific mortality: results from 27 countries. Circulation 147, 35–46 (2023).

    Article 
    PubMed 

    Google Scholar
     

  99. Achebak, H. et al. Ambient temperature and risk of cardiovascular and respiratory adverse health outcomes: a nationwide cross-sectional study from Spain. Eur. J. Prev. Cardiol. 31, 1080–1089 (2024).

    Article 
    PubMed 

    Google Scholar
     

  100. Singh, N. et al. Heat and cardiovascular mortality: an epidemiological perspective. Circ. Res. 134, 1098–1112 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  101. de Schrijver, E. et al. Nationwide projections of heat- and cold-related mortality impacts under various climate change and population development scenarios in Switzerland. Env. Res. Lett. 18, 094010 (2023).

    Article 

    Google Scholar
     

  102. Mugele, H. et al. Control of blood pressure in the cold: differentiation of skin and skeletal muscle vascular resistance. Exp. Physiol. 108, 38–49 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  103. Kim, J. & Kim, H. Influence of ambient temperature and diurnal temperature range on incidence of cardiac arrhythmias. Int. J. Biometeorol. 61, 407–416 (2017).

    Article 
    PubMed 

    Google Scholar
     

  104. Meade, R. D. et al. Meta-analysis of heat-induced changes in cardiac function from over 400 laboratory-based heat exposure studies. Nat. Commun. 16, 2543 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  105. Cui, J. et al. Effects of heat stress on thermoregulatory responses in congestive heart failure patients. Circulation 112, 2286–2292 (2005).

    Article 
    PubMed 

    Google Scholar
     

  106. Green, D. J. et al. Impaired skin blood flow response to environmental heating in chronic heart failure. Eur. Heart J. 27, 338–343 (2006).

    Article 
    PubMed 

    Google Scholar
     

  107. Wilker, E. H. et al. Ambient temperature and biomarkers of heart failure: a repeated measures analysis. Env. Health Perspect. 120, 1083–1087 (2012).

    Article 
    CAS 

    Google Scholar
     

  108. Qiu, H. et al. Is greater temperature change within a day associated with increased emergency hospital admissions for heart failure? Circ. Heart Fail. 6, 930–935 (2013).

    Article 
    PubMed 

    Google Scholar
     

  109. Pan, R. et al. Association between ambient temperature and cause-specific cardiovascular disease admissions in Japan: a nationwide study. Env. Res. 225, 115610 (2023).

    Article 
    CAS 

    Google Scholar
     

  110. Jimba, T. et al. Association of ambient temperature and acute heart failure with preserved and reduced ejection fraction. ESC Heart Fail. 9, 2899–2908 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  111. Munzel, T. et al. Challenges posed by climate hazards to cardiovascular health and cardiac intensive care: implications for mitigation and adaptation. Eur. Heart J. Acute Cardiovasc. Care 13, 731–744 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  112. Vishram-Nielsen, J. K. et al. Association between the incidence of hospitalizations for acute cardiovascular events, weather, and air pollution. JACC Adv. 2, 100334 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  113. Shih, H.-I. et al. Increased medical visits and mortality among adults with cardiovascular diseases in severely affected areas after Typhoon Morakot. Int. J. Environ. Res. Public Health 17, 6531 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  114. Yan, M. et al. Tropical cyclone exposures and risks of emergency medicare hospital admission for cardiorespiratory diseases in 175 urban United States counties, 1999–2010. Epidemiology 32, 315–326 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  115. Danesh Yazdi, M. et al. The effect of long-term exposure to air pollution and seasonal temperature on hospital admissions with cardiovascular and respiratory disease in the United States: a difference-in-differences analysis. Sci. Total. Env. 843, 156855 (2022).

    Article 
    CAS 

    Google Scholar
     

  116. Nieuwenhuijsen, M. J. Green infrastructure and health. Annu. Rev. Public Health 42, 317–328 (2021).

    Article 
    PubMed 

    Google Scholar
     

  117. Pereira, G. et al. The association between neighborhood greenness and cardiovascular disease: an observational study. BMC Public Health 12, 466 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  118. Yeager, R. et al. Association between residential greenness and cardiovascular disease risk. J. Am. Heart Assoc. 7, e009117 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  119. Dazard, J. E. et al. Association of genetic variants with modifiable environmental factor in cardiovascular disease risk: a UK Biobank Mendelian randomization study. J. Am. Coll. Cardiol 85, a331 (2025).

    Article 

    Google Scholar
     

  120. Iyer, H. S. et al. Impact of neighborhood socioeconomic status, income segregation, and greenness on blood biomarkers of inflammation. Env. Int. 162, 107164 (2022).

    Article 
    CAS 

    Google Scholar
     

  121. Wang, K. et al. Relationship of neighborhood greenness to heart disease in 249 405 US medicare beneficiaries. J. Am. Heart Assoc. 8, e010258 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  122. Liu, T. et al. Association of neighborhood greenness exposure with cardiovascular diseases and biomarkers. Int. J. Hyg. Env. Health 234, 113738 (2021).

    Article 

    Google Scholar
     

  123. Chen, H. et al. Residential greenness and cardiovascular disease incidence, readmission, and mortality. Env. Health Perspect. 128, 87005 (2020).

    Article 
    CAS 

    Google Scholar
     

  124. Poulsen, A. H. et al. Concomitant exposure to air pollution, green space, and noise and risk of stroke: a cohort study from Denmark. Lancet Reg. Health Eur. 31, 100655 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  125. Mukhopadhyay, A. et al. Neighborhood-level socioeconomic status and prescription fill patterns among patients with heart failure. JAMA Netw. Open 6, e2347519 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  126. Kowaleski-Jones, L. et al. Walkable neighborhoods and obesity: evaluating effects with a propensity score approach. SSM Popul. Health 6, 9–15 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  127. Son, W. H., Park, H. T., Jeon, B. H. & Ha, M. S. Moderate intensity walking exercises reduce the body mass index and vascular inflammatory factors in postmenopausal women with obesity: a randomized controlled trial. Sci. Rep. 13, 20172 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  128. Yamamoto, Y. et al. Association between subjective walking speed and metabolic diseases in individuals with obesity: a cross-sectional analysis. Sci. Rep. 14, 28228 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  129. Drexel, H. et al. Downhill hiking improves low-grade inflammation, triglycerides, body weight and glucose tolerance. Sci. Rep. 11, 14503 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  130. Marshall, J. D., Brauer, M. & Frank, L. D. Healthy neighborhoods: walkability and air pollution. Environ. Health Perspect. 117, 1752–1759 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  131. Howell, N. A., Tu, J. V., Moineddin, R., Chu, A. & Booth, G. L. Association between neighborhood walkability and predicted 10-year cardiovascular disease risk: the CANHEART (Cardiovascular Health in Ambulatory Care Research Team) cohort. J. Am. Heart Assoc. 8, e013146 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  132. Gorczyca, A. M. et al. Change in physical activity and sitting time after myocardial infarction and mortality among postmenopausal women in the Women’s Health Initiative-Observational study. J. Am. Heart Assoc. 6, e005354 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  133. James, P. et al. Interrelationships between walkability, air pollution, greenness, and body mass index. Epidemiology 28, 780–788 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  134. Appleton, A. A., Holdsworth, E. A. & Kubzansky, L. D. A systematic review of the interplay between social determinants and environmental exposures for early-life outcomes. Curr. Environ. Health Rep. 3, 287–301 (2016).

    Article 
    PubMed 

    Google Scholar
     

  135. Motairek, I., Chen, Z., Makhlouf, M. H., Rajagopalan, S. & Al-Kindi, S. Historical neighbourhood redlining and contemporary environmental racism. Local. Environ. 28, 518–528 (2023).

    Article 
    PubMed 

    Google Scholar
     

  136. Al-Kindi, S. et al. Historical neighborhood redlining and cardiovascular risk in patients with chronic kidney disease. Circulation 148, 280–282 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  137. Mentias, A. et al. Historical redlining, socioeconomic distress, and risk of heart failure among medicare beneficiaries. Circulation 148, 210–219 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  138. Fields, N. D. et al. Historical redlining and heart failure outcomes following hospitalization in the Southeastern United States. J. Am. Heart Assoc. 13, e032019 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  139. Calvillo-King, L. et al. Impact of social factors on risk of readmission or mortality in pneumonia and heart failure: systematic review. J. Gen. Intern. Med. 28, 269–282 (2013).

    Article 
    PubMed 

    Google Scholar
     

  140. Hood, E. Dwelling disparities: how poor housing leads to poor health. Env. Health Perspect. 113, A310–A317 (2005).

    Article 

    Google Scholar
     

  141. Zuluaga, M. C. et al. Housing conditions and mortality in older patients hospitalized for heart failure. Am. Heart J. 161, 950–955 (2011).

    Article 
    PubMed 

    Google Scholar
     

  142. Abohashem, S. et al. Additive effect of high transportation noise exposure and socioeconomic deprivation on stress-associated neural activity, atherosclerotic inflammation, and cardiovascular disease events. J. Expo. Sci. Env. Epidemiol. 35, 62–69 (2025).

    Article 

    Google Scholar
     

  143. Dewan, P. et al. Income inequality and outcomes in heart failure: a global between-country analysis. JACC Heart Fail. 7, 336–346 (2019).

    Article 
    PubMed 

    Google Scholar
     

  144. Tromp, J. et al. Post-discharge prognosis of patients admitted to hospital for heart failure by world region, and national level of income and income disparity (REPORT-HF): a cohort study. Lancet Glob. Health 8, e411–e422 (2020).

    Article 
    PubMed 

    Google Scholar
     

  145. Hahad, O. et al. Exposomic determinants of atherosclerosis: recent evidence. Curr. Atheroscler. Rep. 27, 28 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  146. Osborne, M. T. et al. The combined effect of air and transportation noise pollution on atherosclerotic inflammation and risk of cardiovascular disease events. J. Nucl. Cardiol. 30, 665–679 (2023).

    Article 
    PubMed 

    Google Scholar
     

  147. Al-Kindi, S. Leveraging geospatial data science to uncover novel environmental predictors of cardiovascular disease. JACC Adv. 2, 100371 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  148. Ibrahim, R. et al. Big data, big insights: leveraging data analytics to unravel cardiovascular exposome complexities. Methodist. Debakey Cardiovasc. J. 20, 111–123 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  149. Felker, G. M. & Teerlink, J. R. in Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine 12th edn Ch. 49 (eds Libby, P. et al.) 946–974 (Elsevier, 2022).

  150. Zacharias, M., Al-Kindi, S. & Rajagopalan, S. Isolating noise from signals in the air. JACC Heart Fail. 11, 997–999 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  151. Hahad, O. & Al-Kindi, S. Heavy metal, heavy heart: adverse cardiovascular effects of uranium exposure. JACC Adv. 3, 101404 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  152. Bozkurt, B. et al. HF STATS 2024: heart failure epidemiology and outcomes statistics an updated 2024 report from the Heart Failure Society of America. J. Card. Fail. 31, 66–116 (2025).

    Article 
    PubMed 

    Google Scholar
     

  153. Cho, Y. et al. Effects of artificial light at night on human health: a literature review of observational and experimental studies applied to exposure assessment. Chronobiol. Int. 32, 1294–1310 (2015).

    Article 
    PubMed 

    Google Scholar
     

  154. Dar, T. et al. Psychosocial stress and cardiovascular disease. Curr. Treat. Options Cardiovasc. Med. 21, 23 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

Download references

Acknowledgements

O.H. is a Young Scientist of the DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany, and Guest Scientist at the Max Planck Institute for Chemistry, Mainz, Germany. The work was supported by the environmental network EXPOHEALTH funded by the Science Initiative of the state Rhineland-Palatinate, Germany, and by the environmental research consortium MARKOPOLO, which is funded by the European Union (Grant Agreement Number 101156161) and the Swiss State Secretariat for Education, Research and Innovation (SERI). S.R. is supported by National Institutes of Health Grant R35 ES031702. The views and opinions expressed are those of the authors only and do not necessarily reflect those of the European Union, the European Health and Digital Executive Agency (HADEA) or the SERI. Neither the European Union nor the granting authorities can be held responsible for them.

Author information

Authors and Affiliations

Authors

Contributions

O.H., S.W. and S.A.-K. researched data for the article. O.H., S.W., S.R. and S.A.-K. discussed the content of the manuscript. O.H., S.W. and S.A.-K. wrote the article. All the authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to
Sadeer Al-Kindi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Andreas Daiber and George Thurston for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahad, O., Wass, S., Rajagopalan, S. et al. The environmental exposome in heart failure risk and progression.
Nat Rev Cardiol (2026). https://doi.org/10.1038/s41569-026-01247-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41569-026-01247-1

 

Search

RECENT PRESS RELEASES